

Ku-ring-gai Council

Phase 2 - Groundwater Investigation – Lindfield Village Hub

March 2019

Executive summary

GHD Pty Ltd (GHD) was commissioned by the Ku-ring-gai Council (Council) to conduct a supplementary Phase 2 groundwater investigation of the Lindfield Village Hub, located within the Lindfield town centre. GHD understands that Council is proposing to redevelop the Lindfield town centre as part of an urban renewal project to provide the community with new social infrastructure and services.

The objective of this groundwater investigation is to provide Council with additional site contamination information in line with the recommendations outlined in a previous Phase 2 detailed site investigation report. The outcomes of these are addressed throughout the report.

To achieve the required outcome, GHD's program consisted of the drilling of three boreholes, conversion of two of these to groundwater monitoring wells, and the monitoring of those wells in addition to two previously established groundwater wells.

Key findings from the investigation include the following:

- Drilling identified soil profiles and stratigraphic units consistent with weathered shales and sandstones of the Wianamatta Group, and also consistent with the findings of previous drilling investigations at the site. Site soils typically consist of mid grey-brown fine grained clays and silty clays.
- Minor gravelly-sandy fill and anthropogenic materials (up to 0.2 m bgl) were intersected in all holes, and are superimposed on a soil weathering profile up to 2.5 m bgl, which overlies weathered bedrock and fresh sandstone and shale bedrock.
- The predominant bedrock encountered at all three locations was competent sandstone (probable Ashfield Shale) with minor bands of interlaminated shales and siltstones. Fracturing, where present, was generally aligned along bedding planes and consisted of three to nine breaks per metre. No significant fault gouge was encountered.
- Asbestos in the form of asbestos containing material (ACM; bonded) fragments or fibre bundles (fibrous asbestos) was identified in fill material at two of the three boreholes and is likely the result of the historical and recent demolition of buildings containing asbestos fibre cement.
- The fibrous asbestos was detected in fill below hardstand, and as such there is unlikely to be a current complete source-pathway-receptor linkage to current site users. However, there is a potentially complete linkage for future maintenance workers and construction workers coming into contact with fill materials. There is also potential for migration of asbestos via dust generation from exposed fill during future construction work. The asbestos is likely to be constrained to the fill layer across the site.
- Preliminary waste classification of soils encountered during the investigation indicate that fill
 material across the site is likely to contain some asbestos. Soil containing asbestos will be
 classified be as Special Waste (Asbestos waste) for the purpose of off-site disposal. Where
 material needs to be removed off-site a more detailed waste classification and chemical
 assessment will need to be conducted to allow appropriate disposal of the materials.
- There were no exceedances of the relevant human health criteria for non-asbestos contaminants.

- The exceedances of ecological criteria for soils (zinc) were limited to the surface fill
 materials (0.1 0.2 m bgl) and are in line with background levels for zinc expected for this
 area. No exceedances were detected in samples analysed from below these depths, which
 indicates that the metal impacts are not leaching and unlikely to be a risk to local
 groundwater.
- The ADE (2016) investigation found some soil samples that exceeded given ecological criteria, however, GHD did not identify any on-site ecological receptors and, based on the results of this groundwater investigation, it is not considered that the metal impacts identified within the fill material at the site are significant enough to warrant remediation in the context of the proposed use.
- Groundwater was intersected between 4.20 m bgl in BH6, to 8.99 m bgl in GHD_BH1. Groundwater levels relative to AHD, indicate groundwater is highest in the east of the site at GHD_BH1A, and follows topography down towards the west of the site at BH6.
- Based on information provided to GHD by Council, it is understood that basement depth of the proposed development would be approximately 24 m bgl in the vicinity of GHD_BH1, and 20 m bgl in the vicinity of BH5. Given that groundwater was intersected at levels significantly shallower than this, it is expected that groundwater will be encountered during developments works, and dewatering will be required.
- Exceedances of freshwater GILs are noted at all groundwater monitoring locations for copper, lead, manganese, nickel, zinc and chromium. There are no ecological receptors identified on site or within the immediate within the vicinity of the site, therefore, these exceedances are deemed to constitute an acceptable level of risk for the site in the context of the current and proposed use.
- Groundwater is not abstracted within the vicinity of the site for any purpose, and there is considered to be no plausible source-pathway-receptor linkage for contaminants identified in groundwater to current or future receptors.
- As no other on-site ecological receptors were identified in the groundwater investigation and the metals impacts identified are unlikely to be migrating off-site, there is unlikely to be a pathway for the contamination to reach an ecological receptor. The risk to potential ecological receptors would therefore be considered to be minimal.
- Based on the currently available information on the site, and in accordance with the NSW EPA (2015) requirements with regards to duty to report a contaminated site, it is GHD's opinion that there is presently insufficient evidence to trigger reporting of this site to EPA.

Based upon the findings of this investigation as outlined above, the following recommendations are made in order to further assess or mitigate contamination risks associated with the site:

- Develop a Construction Environmental Management Plan (CEMP) during construction to manage soils and groundwater, including a plan for investigating and managing asbestos in site fill material and a dewatering plan for the site for development below the groundwater table. This plan will provide guidance on minimising contamination impacts to site workers, occupants and off-site receptors as a result of construction.
- A sampling program to assess the extent of asbestos in fill is recommended during site clearance to assess the volume of soil requiring specialist disposal. Disposal of soil waste containing asbestos will require classification of the waste as: Special Waste (Asbestos Waste), subject to confirmation of concentrations of chemical contaminants. All waste would require removal by a licenced waste disposal contractor to a suitably licenced facility.
- Following removal of asbestos impacts, all ground surfaces should be the subject of a visual clearance by a licenced asbestos assessor.

- While the presence of asbestos is considered unlikely to pose an unacceptable risk to current site users in the existing configuration in the short term prior to site redevelopment, GHD recommends that Council implement an Asbestos Management Plan for any intrusive works which may disturb fill material at the site.
- Based on the findings of this investigation, GHD do not consider that there is a need to prepare a standalone Remedial Action Plan (RAP) for site redevelopment.

This report is subject to, and must be read in conjunction with, the limitations set out Section 1.3 and the assumptions and qualifications contained throughout the Report.

Table of contents

1.	Intro	duction	8
	1.1	Objective	8
	1.2	Scope of work	8
	1.3	Limitations	10
2.	Site	information	11
	2.1	Site identification	11
	2.2	Surrounding land use	12
	2.3	Proposed land use	12
	2.4	Environmental setting	13
	2.5	Site history	15
	2.6	Review of previous environmental investigations	16
3.	Data	a quality objectives	18
	3.1	Overview	18
	3.2	Step 1: State the problem	18
	3.3	Step 2: Identify the decisions	18
	3.4	Step 3: Identify inputs to the decision	19
	3.5	Step 4: Define the study boundaries	19
	3.6	Step 5: Develop a decision rule	19
	3.7	Step 6: Specify limits on decision errors	19
	3.8	Step 7: Optimise the design for obtaining data	21
4.	Basi	s for assessment	22
	4.1	Soil assessment criteria	22
	4.2	Groundwater assessment criteria	24
	4.3	Aesthetic considerations	25
5.	Sam	pling and analysis program	26
	5.1	General	26
	5.2	Workplace health and safety	26
	5.3	Sampling locations and details	26
	5.4	Sample analytical program	28
6.	QA/0	QC data quality assessment	30
	6.1	Overview	30
	6.2	Field quality controls	30
	6.3	Soil	32
	6.4	Groundwater	34
	6.5	Summary of QA/QC assessment	35
7.	Inve	stigation results	36
	7.1	Overview	36
	7.2	Field observations – soil and core	36

	7.3	Groundwater monitoring event	36
	7.4	Laboratory analytical results	38
8.	Discu	ussion of results and conceptual site model	42
	8.1	Assessment of exposure risks for on-site receptors	42
	8.2	Assessment of exposure risks to off-site receptors and from off-site sources	43
	8.3	Risks to services and buried structures	44
	8.4	Remaining data gaps	45
	8.5	Duty to report	45
9.	Conc	lusions and recommendations	47
	9.1	Conclusions	47
	9.2	Recommendations	48
10.	Refe	rences	49

Table index

Table 1 Site location summary	11
Table 2 Site zoning and legal identifiers	11
Table 3 Published geology	13
Table 4 Groundwater bores in the vicinity of the site	14
Table 5 Summary of soil investigation locations	26
Table 6 Summary of soil analytical program	28
Table 7 Summary of groundwater analytical program	29
Table 8 Soil RPDs - Exceedance of adopted assessment criteria	33
Table 9 Groundwater RPDs - Exceedances of adopted assessment criteria	34
Table 10 Groundwater depth	37
Table 11 Field-measured groundwater quality results	37
Table 12 Soil criteria exceedances	38
Table 13 Waste classification criteria exceedances	39
Table 14 Groundwater criteria exceedances - ANZECC 2000 FW Medium-Low Reliability, NEPM 2013 Table 1C GILs, Fresh Waters, NEPM 2013 Table 1(A) HSL A/B Sand (2 - 4 m)	40
Table 15 Groundwater criteria exceedances – ADWG 2011 (updated 2018) Aesthetic values, ADWG 2011 (updated 2018) Health values	41

Figure index

Figure 1 - 21_27850_Z001_LINDFIELD_Site_Location_Plan

Figure 2 - 21_27850_Z002_LINDFIELD_Investigation_Locations

Figure 3_Land Zoning

Figure 4_Acid Sulfate Soils

Appendices

Appendix A - Figures

Appendix B – Soil borehole logs

Appendix C – Equipment calibration sheets

Appendix D – Field records and photos

Appendix E - Summary of analytical results and QA/QC

Appendix F – Laboratory certificates

Appendix G – Waste tracking documents

1. Introduction

GHD Pty Ltd (GHD) was commissioned by the Ku-ring-gai Council (Council) to conduct a supplementary Phase 2 groundwater investigation of the Lindfield Village Hub, located within the Lindfield town centre, NSW (the site). The site is bound by Bent Street to the north, Beaconsfield Parade to the south, Woodford Lane to the east and residential properties to the west. It is currently occupied by two council car parks and a number of residential properties and vacant lots.

GHD understands that Council is proposing to redevelop the Lindfield town centre as part of an urban renewal project to provide the community with new social infrastructure and services.

Previous environmental and geotechnical investigations undertaken at the site include a Phase 2 DSI (ADE 2016), which was limited to site soil investigation, and a geotechnical investigation (Asset Geotechnical, 2016).

The purpose of this groundwater investigation is to provide Council with additional contamination information to address recommendations outlined in the ADE DSI report which include:

- installation and monitoring of a groundwater monitoring well along the eastern boundary adjacent to the dry cleaning business, and a well adjacent to the electrical substation
- Development of a RAP to address potential for soil and groundwater contamination

To achieve the required outcome, GHD's program consisted of the drilling of three boreholes, conversion of two of these to groundwater monitoring wells, and the monitoring of those wells in addition to two previously established groundwater wells

A site location plan is provided as Figure 1 in Appendix A.

1.1 **Objective**

The objectives of the groundwater investigation works at the site were to:

- Identify whether the site is likely to have been impacted by contamination from the Marcus
 Dry Cleaning business located at 346 Pacific Highway, Lindfield, and the electrical
 substation located at the southern end of the site on Beaconsfield Parade, Lindfield, and
 historical site operations in relation to the current and proposed future land uses.
- Assess the potential for identified contamination (if any) to have adverse impacts on human health, the environment and current or proposed building structures on-site.
- Where applicable, assess the potential effects of identified contaminants on soil and groundwater to off-site receptors.
- Identify any outstanding data gaps in relation to assessing the contamination status of the site.
- Identify if remedial measures are required to make the site suitable for the current or proposed future land uses.

1.2 Scope of work

The scope of works completed by GHD as part of this assessment, and in accordance with GHD's proposal (RFQ 79-2018 Proposal for Lindfield Village Hub, Groundwater Testing Services, dated 31 October 2018), are described below.

- Review of previous environmental and geotechnical investigations undertaken at the site, namely the ADE (2016) Phase 2 DSI report, and the Asset Geotechnical (2016) report. Copies of these reports were provided to GHD by Council.
- Site walkover to:
 - identify areas of potential contamination based on observation of surface conditions, and evidence of current or former potentially contaminating activities including existing business activities and waste disposal.
 - locate previously drilled wells BH6 (Douglas Partners) and BH5 (Asset Geotechnical), and assess their potential for use as monitoring wells.
- A review of published soils, acid sulphate soils, geology, hydrogeology, hydrology, topography, aerial photographs and EPA records.
- Utilities clearance of exploratory locations by a specialist contractor to enable safe subsurface boring.
- Drilling and sampling of three boreholes, GHD_BH1, GHD_BH1A and GHD_BH2, using a combination of hand augering (HA), machine single flight auger (SFA) drilling, and diamond coring (DC) to penetrate the bedrock to the depths prescribed by Council.
- Drilling of GHD_BH2 to the proposed depth of basement development (24 m bgl at GHD_BH1 and 21 m bgl at GHD_BH2), to provide rock core for geotechnical information as per Council request. Council later determined that it did not require geotechnical information to be collected from the boreholes. GHD_BH2 was backfilled after drilling due to the existing well BH5 adjacent to the position of GHD_BH2.
- Collection of disturbed soil samples and core, and description of strata encountered and screening of samples using a photo-ionisation detector (PID) for potential volatile organic compounds (VOCs).
- Installation of groundwater monitoring wells in GHD_BH1 (lower sandstone unit) and GHD_BH1A (upper shale unit).
- Groundwater monitoring of GHD_BH1, GHD_BH1A, BH5 and BH6.
- Survey of the collar locations of GHD_BH1, GHD_BH1A and GHD_BH2, and BH5 and BH6.
- Collection of soil and groundwater samples from new and pre-existing wells for analysis of contaminants of potential concern (COPC):
 - Soil total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), metals (arsenic, cadmium, chromium, copper, mercury, nickel, lead, zinc, iron, manganese), asbestos, chlorinated solvents (VHC)
 - Waters TRH, BTEX, PAH, VHC, PCB, metals (arsenic, cadmium, chromium, copper, mercury, nickel, lead, zinc, iron, manganese)
- Preparation of this groundwater investigation report in general accordance with the *Guidelines for Consultants Reporting on Contaminated Sites* (NSW OEH, 2011).
- Make recommendations for follow up actions, including development of a Remedial Action Plan (RAP), should it be required.

1.3 Limitations

This report has been prepared by GHD for Ku-ring-gai Council and may only be used and relied on by Kuring-gai Council for the purpose agreed between GHD and the Ku-ring-gai Council as set out Section 8 of this report.

GHD otherwise disclaims responsibility to any person other than Ku-ring-gai Council arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

GHD has prepared this report on the basis of information provided by Ku-ring-gai Council and others who provided information to GHD (including Government authorities), which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the report which were caused by errors or omissions in that information.

The opinions, conclusions and any recommendations in this report are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points. Investigations undertaken in respect of this report are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and conditions may have been identified in this report.

Site conditions (including the presence of hazardous substances and/or site contamination) may change after the date of this Report. GHD does not accept responsibility arising from, or in connection with, any change to the site conditions. GHD is also not responsible for updating this report if the site conditions change.

2. Site information

2.1 Site identification

A site location plan showing the location of the property is provided as Figure 1 in Appendix A. A summary of available information pertaining to the site is presented in Table 1 and Table 2.

Table 1 Site location summary

Information	Details
Local Government Area	Ku-ring-gai Council
Site address	Lindfield town centre. Bound by Bent Street to the north, Beaconsfield Parade to the south, Woodford Lane to the east and residential properties to the west.
Site area	Approximately 1.34 hectares
Geographic Co-ordinates	330341 E, 6261206 N
Current Land Use	Public car parks, some residential properties and vacant lots

Table 2 Site zoning and legal identifiers

Lot Number	Deposited Plan Number	Zoning	Address
А	445535	B2 Local Centres	1 Woodford Lane, Lindfield
9	1090427	B2 Local Centres	2 Bent Street, Lindfield
10	3498	B2 Local Centres	4 Bent Street, Lindfield
3	667420	B2 Local Centres	6 Bent Street, Lindfield
1	724823	B2 Local Centres	8 Bent Street, Lindfield
1	980108	B2 Local Centres	10 Bent Street, Lindfield
5	666521	Part B2 Local Centres and part R4 High Density Residential	12 Bent Street, Lindfield
1	929131	B2 Local Centres	1B Beaconsfield Pde, Lindfield
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16	1099330	B2 Local Centres	19 Drovers Way, Lindfield
		B2 Local Centres	Drovers Way between Beaconsfield Pde and rear of 6 Bent Street, Lindfield

Lot Number	Deposited Plan Number	Zoning	Address
		B2 Local Centres	Woodford Lane, Lindfield

The Ku-ring-gai Local Environment Plan 2015 (LEP), land zoning map is provided as Figure 3 in Appendix A.

2.2 Surrounding land use

Land adjacent to the site consists of the following:

- North: Bent Street, including a number of low density residential properties and vacant lots along the south side of the street, and mixed density residential properties, including Lindfield Manor Retirement Village, on the northern side of Bent Street
- East: Woodford Lane, including public car parks servicing the Lindfield town centre, and commercial properties between Woodford Land and Pacific Highway. Lindfield train station lies to the east of the site on Pacific Highway. A dry cleaning business is located at 346 Pacific Highway and is accessible from Woodford Lane.
- South: Beaconsfield Parade, including the Scouts Hall and the electrical substation at the southern end of the car park, and mixed residential and commercial properties along the south side of Beaconsfield Parade
- West: Drover's Way, including public car parks, some unused green space west of the car park and low density residential properties.

2.3 **Proposed land use**

Ku-ring-gai Council proposes to redevelop the site to create the Lindfield Village Hub (the Hub) (for further information on the proposed redevelopment, refer to: <u>http://www.kmc.nsw.gov.au/Current projects priorities/Works and upgrades/Major projects/Ac tivate Lindfield/Lindfield Village Hub</u>)

The Hub is intended to be a mix of green open space, public plaza, and community buildings, retail and residential and underground car parking that will include:

- A 1,200 square metre (m²) library
- A 1,250 m² community centre
- A 550 m² child care facility
- 3,900 m² of public space including a plaza, park and open space
- Residential apartments
- An underground supermarket and retail shops
- Basement car parking
- Dining and retail outlets

Following this redevelopment, site usage patterns are anticipated to differ from current, with increased availability of useable green space, and the development of a childcare facility on site. Potential for access to site soils in the proposed redevelopment scenario is unknown and is not provided on the Lindfield Hub information website provided by Council.

2.4 Environmental setting

2.4.1 Topography and drainage

Surveying of previous drilled boreholes (Asset Geotechnical 2016), indicates that surface RL across the site varies from approximately 94 metres (m) Australian Height Datum (AHD) in the north east of the site, sloping away to approximately 88 m AHD along the western boundary of the site. This was confirmed by surveying of the borehole collar relative levels (RLs) undertaken during the current site investigation works. Surface water runoff is therefore expected to be from the north-eastern boundary to the west and south-western boundary of the site.

Surface drainage is captured via stormwater drains, with any excess surface water runoff expected to follow local topography towards Little Blue Gum Creek, approximately 1.4 kilometres (km) to the west of the site. Little Blue Gum Creek ultimately flows into the Lane Cove River at a point 1.9 km south west of the site.

2.4.2 Soil landscapes

The Soil Conservation Service of NSW 1:100,000 Soil Landscape Series Sheet 9130, Sydney (Chapman and Murphy, 1989), classifies the soil as Glenorie, and describes the soil and landscape as follows:

- Landscape: The landscape is comprised of undulating to rolling hills with local relief varying from 50 – 120 m AHD, with moderately inclined slopes of 10 – 15 % being the dominant landform (ADE 2016).
- Soils: The Glenorie (9130 gn) soils landscape includes soils that are shallow to moderately deep, with colours varying between red, brown and yellow-cream, and a tendency to being dry and slightly plastic (Chapman and Murphy, 1989). The soils are derived from the Ashfield Shale of the Triassic Wianamatta Group, which is characterised by laminate, dark grey siltstone, shale, calcareous claystone and coal.

2.4.3 Geology

According to the Sydney 1:100,000 scale *Geological Series Sheet SI 56-5* the site is underlain by the following geological unit outlined in Table 3.

Table 3 Published geology

Period	Group	Description
Triassic	(Rwa) Wianamatta Group	Ashfield Shale Minchinbury Sandstone Bringelly Shale

The Wianamatta Group is represented by the Ashfield Shale unit, which is typically described as a succession of *'Black to dark grey shale and laminate that contains some sandstone beds"*, the Minchinbury Sandstone and the Bringelly Shale. No geological structures such as faults, folds, dykes or other structures are indicated at the site. The Wianamatta Group overlies the Triassic Hawkesbury Sandstone.

Localised fill, associated with the several generations of buildings constructed and demolished since 1943 is likely to be present across the site, as noted in Section 2.5.1. Fill material has been noted during previous on-site investigations which identified fill materials up to approximately one metre below ground level (m bgl), but is generally to 0.3 m bgl (ADE, 2016).

2.4.4 Hydrogeology

GHD conducted a review of existing groundwater bore records using the NSW Water Information Database on 21 January 2019. The search was conducted to identify registered groundwater bores in close proximity to the site, and to record information such as use and standing water level. No groundwater bores were identified within a 500 m radius of the site. The closest groundwater bore (GW023498) is located approximately 560 m to the north of the site near the intersection of Treatts Road with Lindfield Avenue. Groundwater was encountered with a standing water level of 6.80 m below ground level, as measured at the time of drilling in 1966. The next closest bore, GW1086792, is located approximately 1100 m to the south east of the site and is used for domestic purposes. The standing water level for this bore was recorded at 65 m bgl at the time of drilling in 2007. A summary of the bore search findings is presented in Table 4.

Bore ID	Purpose	Depth (m)	Standing water level (m)	Approximate distance from site	Driller's log
GW023498	General Use	8.22	6.80	560	0.0 – 6.70 m white sand 6.70 – 8.22 m white sand, fossilised shell fragments
GW108792	Domestic	174.00	65.00	1100	0.0 – 4.0 m clay 4.0 – 15.0 m shale 15.0 – 174 m sandstone with minor shale

Table 4 Groundwater bores in the vicinity of the site

2.4.5 Hydrology

The ground surface of the site is primarily sealed bitumen, with surface water runoff likely to enter the site stormwater drainage system prior to discharge. In the unsealed areas on the site, surface water would be expected to infiltrate the ground surface. The closest receiving water body is Little Blue Gum Creek as discussed above in Section 2.4.1.

Due to the urban environment surrounding the site, excess surface water from surrounding land adjacent roads is also expected to enter the local stormwater drainage system.

2.4.6 Acid sulphate soils

The Ku-ring-gai LEP Acid Sulfate Soils Map – Sheet ASS_015 (see Figure 4, Appendix A), describes the site as having no acid sulphate soils. Approximately 60 m to the west of the site, the map shows Class 5 acid sulphate soils (ASS). ASS are not typically found in Class 5 areas, and no other class of soils is mapped within 1.5 km of the site. Land management activities are hence not likely to be affected by ASS materials at this site. Development consent is only required if works are conducted below five metres AHD, and if the water table is likely to be lowered below one metre AHD on adjacent Class 1, 2, 3, or 4 land.

2.5 Site history

2.5.1 Historical aerial photographs

A review of historical aerial photographs taken in 1943 using NSW Land and Property Information browser service SIX Maps, shows the site was covered by low density residential and commercial businesses at that time. There were no public car parks, and the properties facing onto the Pacific Highway extended through to Drovers Way which was then an unsealed laneway. Residences existed on the lots at 2, 4, 6, 10 and 12 Bent Street, and single residential properties were present on the north side of Bent Street.

Interrogation of the historical site photographs using Google Earth Pro show the area was developed for the existing public car parking prior to 2005, with Woodford Lane also in existence. By this time, the properties along the Pacific Highway had been reduced in extent to allow for the car park development. Single residential properties existed from 2 – 12 Bent Street, and the Lindfield Manor Retirement Village had replaced single residences on the north side of Bent Street.

Redevelopment of the site remained static until 2014, when the residences at 8 and 10 Bent Street were demolished to become vacant lots. This was followed by the demolition of 12 Bent Street during 2015. The property at 2 Bent Street was demolished during the second half of 2016. The residences at 4 and 6 Bent Street currently remain standing.

In summary, the site was developed for residential purposes prior to 1943, before being redeveloped primarily for public car parking to service the Lindfield town centre some time prior to 2005.

2.5.2 Regulatory information summary

The list of NSW contaminated sites notified to EPA was searched on 9 January 2019. According to the EPA, "A site will be on the Contaminated Land: Record of Notices only if the EPA has issued a regulatory notice in relation to the site under the *Contaminated Land Act 1997* (CLM Act).

The sites appearing on the "List of NSW contaminated sites notified to the EPA" indicate that the notifiers consider that the sites are contaminated and warrant reporting to the EPA. However, the contamination may or may not be significant enough to warrant regulation by the EPA. The EPA needs to review and, if necessary, obtain more information before it can make a determination as to whether the site warrants regulation."

The search of the list of NSW contaminated sites notified to EPA identified a 7-Eleven (former Mobil) service station located at 238 Pacific Highway, Lindfield. The record notes that regulation of the service station site is not required under the Contaminated Land Management Act (CLM Act). Based on the undulating local topography and the distance to the site, it is considered unlikely that a contamination plume associated with the 7-Eleven site would have potential hydraulic impact on the site. This site is not listed on the Record of Notices.

No contaminated sites Record of Notices were identified within 500 m of the site.

2.6 Review of previous environmental investigations

In preparing this report, GHD has reviewed the following previous investigation reports provided by Council, which are relevant to the site:

- Phase II Detailed Site Investigation Lindfield Community Hub. Lindfield NSW. ADE Consulting Group July 2016
- Proposed Mixed Use Development Lindfield Community Hub Project. Report on Geotechnical Investigation. Asset Geotechnical December 2016.

Relevant information from these reports has been summarised below.

2.6.1 Summary of data from previous investigations

A review of the ADE (2016) report indicates that the site has been subject to a number of geotechnical and environmental investigations undertaken by ADE and Douglas Partners (DP) beyond the reports which were provided to GHD. In addition, Asset Geotechnical undertook a geotechnical investigation in late 2016. As some of these reports were not provided to GHD, where noted, the conclusions and summary below are not based on our interpretation, but refer to a summary in the ADE (2016) report:

The following is a summary of the work and conclusions,:

- In 2012 ADE undertook a Phase 1 Preliminary Site Investigation (PSI) (ADE (2016) summary) which concluded that, based on data and evidence collected during a desktop and site inspection, a Phase 2 DSI be undertaken to assess the type, degree and extent of potential contamination, and whether it posed a risk to human health or the environment (ADE 2016).
- In 2013, Douglas Partners completed a preliminary Phase 2 site investigation (ADE (2016) summary) with limited sampling, including the drilling of five boreholes to eight metres below ground level (bgl), One borehole (BH6), was converted to a groundwater monitoring well. The findings of the report suggested the site was suitable for continued and proposed use as a car park, with no requirement for a remedial action plan (RAP) for the development. A construction management plan was recommended to manage the disposal or re-use of excavated soils.
- In June 2016, ADE undertook a Phase 1 PSI (ADE (2016) summary) to investigate the land use history of the site and surrounding areas to identify past practices that may have potential to cause soil or groundwater contamination at the site. The investigation identified the following potential sources of contamination:
 - Vehicle emissions and leaking oil
 - Down-gradient migration of contaminants associated with the dry cleaning business (VHCs), and the electrical substations (PCBs)
 - Pesticides and insecticides used on vegetation in median strips
 - Placement of uncontrolled fill beneath the car park

ADE (2016) recommended an intrusive investigation to assess the extent of potential contamination

- In July 2016, ADE carried out a Phase 2 DSI as follow up to the Phase 1 PSI. Their findings
 identified no samples with COPC that exceeded selected human health criteria, and several
 samples that exceeded selected ecological assessment criteria. Based on these findings,
 they recommended the following:
 - A groundwater investigation including installation and sampling of groundwater wells along the eastern boundary to target a dry cleaning business and electrical substation
 - Sampling of Douglas Partners groundwater monitoring well, BH6
 - Preparation of a RAP to remediate soil impacts identified as part of the DSI
- In December 2016, Asset Geotechnical undertook a geotechnical investigation to assess the surface and subsurface conditions and provide information including groundwater levels and dewatering requirements. They determined that groundwater levels are well above the proposed basement levels and would require groundwater control during development.

3. Data quality objectives

3.1 Overview

Data quality objectives (DQOs) have been established for this assessment to assist the design and implementation of data collection activities, to ensure the type, quantity and quality of data obtained are appropriate and address the project objectives. The DQO process described in the Guidelines for the NSW Site Auditor Scheme, 3rd edition (EPA, 2017) was adopted for this project. The DQO process involves seven steps:

- Step 1: State the problem
- Step 2: Identify the decision
- Step 3: Identify inputs to the decision
- Step 4: Define the study boundaries
- Step 5: Develop a decision rule
- Step 6: Specify limits on decision errors
- Step 7: Optimise the design for obtaining data

Description of each DQO step developed for this project is provided below.

3.2 Step 1: State the problem

The Phase 2 DSI completed by ADE (2016) identified several soil samples at the site with potential contamination exceeding their nominated ecological criteria. They also questioned the quality of the groundwater at the site, particularly along the eastern boundary, down gradient of the dry cleaning business and the electrical substation.

Data gaps identified during the desktop review completed by GHD included:

- The status of soil and groundwater contamination from the identified potential sources both on and off-site
- The degree and extent of contamination (if present).
- The potential presence of yet unidentified on-site or off-site contaminating sources.

The problem as it stands is that the site is proposed for redevelopment and the degree to which contamination may pose a risk to human health and/or environmental receptors both on and off-site as a result of the change in site condition is unknown.

3.3 Step 2: Identify the decisions

The decisions to be made at the end of this assessment are:

- Is there soil and/or groundwater contamination at the site which presents a potential risk to identified human health and ecological receptors associated with the proposed redevelopment of the site?
- Is there a need for further assessment, remediation and/or management of contamination (if identified)?
- Is there a requirement for further assessment and/or management of identified contamination?

3.4 Step 3: Identify inputs to the decision

The information considered in the decision making process comprised:

- Review of historical land uses and potential contamination sources identified at the site and on surrounding properties.
- The proposed redevelopment extent and scope.
- Published environmental information for the site, including geological and hydrogeological maps.
- Information obtained from previous investigations, listed in Section 2.6.1.
- Soil and groundwater analytical data obtained during the investigation, and comparison to applicable criteria for the proposed land use.
- Applicable guidelines, made or endorsed by NSW EPA under Section 60 of the *Contaminated Land Management Act 1997* (CLM Act).

3.5 Step 4: Define the study boundaries

The lateral investigation extent is the investigation area illustrated in Figure 2 (Sampling Location Plan), Appendix A.

The maximum vertical extent for soil and hard rock investigation was 24.85 m bgl at the base of GHD_BH1. The maximum screened depth for groundwater was 23 m bgl at GHD_BH1.

The temporal extent of the soil investigation was between 4 and 6 December 2018, with groundwater sampling undertaken on 14 December 2018.

3.6 Step 5: Develop a decision rule

The decision rules adopted in this detailed site investigation are as follows:

- The concentrations of contaminants of potential concern are to be assessed against adopted site investigation levels, which are sourced from NSW EPA endorsed guidelines with reference to site-specific exposure scenarios for permissible and proposed land use.
 - If concentrations of contaminants in soils, landfill gas and groundwater are below the adopted investigation levels, then contamination at the site will be considered unlikely to pose an unacceptable risk to identified receptors. In such case, no further investigation, remediation or management is required.
 - Conversely, when concentration(s) of contaminants of potential concern exceed the adopted site investigation levels, further assessment would be required to evaluate the need for additional investigation and / or remediation / management activities.

3.7 Step 6: Specify limits on decision errors

Two primary decision error types may occur due to uncertainties or limitations in the project data set:

- A sample / area may be deemed to pass the nominated criteria, when in fact it does not. This may occur if contamination is 'missed' due to limitations in the sampling plan, or if the project analytical data set is unreliable.
- A sample / area may be deemed to fail the nominated criteria, when in fact it does not. This may occur if the project analytical data set is unreliable, due to inappropriate sampling, sample handling, or analytical procedures.

The following aspects were considered when establishing the acceptable limits on decision errors:

- The null hypothesis for the project is: the sample / investigation area is deemed to be contaminated. Sufficient weight of evidence, via the uses of statistical analysis (e.g. 95% upper confidence limit of the mean (UCL)) and/or gathering of multiple lines of evidence (e.g. desktop review and laboratory analytical data), would be required to reject / disapprove the null hypothesis.
- A quality assurance / quality control (QA/QC) assessment evaluating the reliability and useability of data, which are expressed as five data quality indicators (DQI) discussed in Section 3.

3.7.1 Data quality indicators

The DQIs for sampling techniques and laboratory analysis of collected samples identifies the acceptable level of error for this investigation. The DQIs adopted in this investigation comprise five components, being precision, accuracy, representativeness, comparability and completeness. Detailed discussion of each component is provided below:

 Precision – measures the reproducibility of measurements under a given set of conditions. The precision of the data is assessed by calculating the Relative Percent Difference (RPD) between duplicate sample pairs.

$$RPD(\%) = \frac{\left|C_o - C_d\right|}{C_o + C_d} \times 200$$

WhereCo =Analyte concentration of the primary sampleCd =Analyte concentration of the duplicate sample

GHD adopts a nominal acceptance criterion of 50% RPD for field duplicates and splits for organics and an acceptance criterion of 30% RPD for inorganics. However, it is noted that this will not always be achieved, particularly at low analyte concentrations and in heterogeneous media.

- Accuracy measures the bias in a measurement system. Accuracy can be undermined by such factors as field contamination of samples, poor preservation of samples, poor sample preparation techniques and poor selection of analytical techniques by the analysing laboratory. Accuracy is assessed by reference to the analytical results of laboratory control samples, laboratory spikes, laboratory blanks and analyses against reference standards. The nominal "acceptance limits" on laboratory control samples are defined as follows:
 - Laboratory spikes 60-130% recovery for metals / inorganics and 60-140% for organics.
 - Laboratory duplicates Nominal RPD values of 30% or lower. Higher RPD values are generally considered acceptable when the result is close to the practical quantitation limit (PQL).
 - Laboratory Surrogates (Organics only) 60% 130% recovery.
 - Laboratory blanks <PQL.
- Representativeness expresses the degree which sample data accurately and precisely
 represents a characteristic of a population or an environmental condition.
 Representativeness is achieved by collecting samples in appropriate locations across the
 investigation area, and by using an adequate number of sample locations to characterise
 soil and groundwater at the investigation area. Consistent and repeatable sampling
 techniques and methods are utilised throughout the sampling.

- Completeness defined as the percentage of measurements made which are judged valid measurements. The completeness goal is set at there being sufficient valid data generated during the study. If there is insufficient valid data, then additional data are required to be collected.
- Comparability is a qualitative parameter expressing the confidence whether one data set can be compared with others. This is achieved through maintaining a level of consistency in techniques used to collect samples and ensuring analysing laboratories use consistent analysis techniques and reporting methods.

3.8 Step 7: Optimise the design for obtaining data

With due consideration given to the DQO steps described above, a sampling and analytical program was developed for the intrusive investigation programme to obtain information to address the decision questions set out in Section 3.3. The program comprised the following:

- Borehole drilling for soil investigation and sampling at three locations targeting the down gradient location of the dry cleaning business and the electrical substation. The sampling locations were determined based on a judgemental approach.
- Installation and monitoring of three monitoring wells for groundwater.
- Laboratory analysis of selected soil samples and groundwater samples for identified contaminants of potential concern. Samples were selected on the basis of:
 - The likelihood of contamination presence in surficial and shallow soils in the unsaturated zone.
 - Visual and olfactory indications of potential contamination presence observed during investigation, as well as PID screening results
- Assessment of data quality with reference to the specified DQIs to evaluate the reliability and useability of the obtained data.
- Assessment of laboratory analytical results against adopted criteria.

4. Basis for assessment

Based on information provided by Council to GHD outlining the scope of the proposed future land use, GHD understands that the proposed development will include a mixed use community hub with a library, community centre, childcare centre, public plaza, park and open space, residential apartments, dining and retail outlets, supermarket and basement parking. The exact locations of these amenities are currently unknown, hence GHD has chosen a conservative approach to the assessment criteria where appropriate.

4.1 Soil assessment criteria

The following provides a summary of the criteria selected for the assessment and the associated rationale. The specific assessment criteria are presented on the assessment tables provided Appendix E.

4.1.1 Chemicals and asbestos in soil

The assessment criteria have been adopted from the following guidelines made or endorsed by the NSW EPA:

Ecological criteria:

NEPM (2013) Ecological Investigation Levels (EILs); Ecological Screening Levels (ESLs) Urban Residential - Public Open Space

The nature of the site results in site usages that are best described under multiple EIL / ESL scenarios.

- ESL/EIL criteria for commercial and industrial land use may be applicable, however, public open space criteria have been adopted as it is protective of the most sensitive use in an unknown configuration.
- These ecological investigation levels were adopted for contaminants including TRHs, BTEX, metals, and some PAHs.
- The ecological investigation levels take into account direct contact pathways, including incidental ingestion and dermal contact. These levels are only applied to the upper 2 m of the soil profile.
- Site specific ecological investigation levels for specific metals were not calculated using background concentrations or soil quality; as a result the EILs used for copper, zinc and nickel are conservative Added Contaminant Limits (ACL).
- Given that the area is designed to include urban residential and public open space, these criteria have been conservatively adopted to take into consideration the landscaped areas where vegetation either exists or is proposed.

Human Health Criteria:

NEPM (2013) Health Investigation Levels (HILs) HIL A – residential with garden/accessible soil, including childcare centres; HIL B – residential with minimal opportunity for soil access; HIL C – public open space including parks and playgrounds

The nature of the site results in site usages that are best described under multiple HIL scenarios.

- The Health Investigation Level (HIL) A was adopted to reflect the inclusion of a child care centre as part of the proposed development
- HIL B was considered to reflect the proposed site development of multistorey residential dwellings with paved yard space and minimal opportunities for soil access
- HIL C was considered to reflect the site usage scenario of potential regular use of public greenspace areas for recreational purposes.

HIL A is the most conservative set of criteria and has been adopted here as a preliminary screen due to the planned presence of a childcare centre and the unknown layout of that centre.

NEPM (2013) Health Screening Levels (HSLs) A / B for Residential Vapour Intrusion, Sand (0-2m)

• The HSL D Commercial / Industrial criteria were considered based on the proposed design for basement car parking across the site. However, noting that a sensitive land use (residential including child care) is planned for development, and the layout of the site is unknown, HSL A/B criteria have been adopted here as a preliminary screen as the most conservative set of criteria.

CRC CARE (2011) Soil Vapour HSLs for Intrusive Maintenance Worker (Shallow Trench)

- Screening levels for petroleum hydrocarbons were considered for intrusive maintenance workers carrying out shallow trench works.
- The NEPM (2013) HSL A & B for petroleum hydrocarbons were adopted as the initial screening assessment criteria, as the HSL-A & B is more stringent than the CRC HSLs for intrusive maintenance workers.

CRC Care (2011) Soil HSLs for Direct Contact: Recreational / Open Space, Commercial / Industrial and Intrusive Maintenance Worker

- The nature of the proposed development results in site usages that may be described under multiple direct contact scenarios during and after construction.
- The recreational direct contact criteria were adopted to reflect the site usage scenario of the public with potential regular use of outdoor areas for recreational purposes.
- Intrusive maintenance worker criteria have been adopted to reflect the site usage scenario encountered during construction, particularly for those workers involved in the installation of utilities.

Asbestos in soil

In alignment with the DQOs set for this groundwater investigation, a preliminary assessment on asbestos in soil was undertaken for the site area (see Waste Classification report in Appendix E), where selected soil samples were screened for asbestos using a presence / absence protocol in laboratories. This analytical method does not allow quantification of asbestos concentrations in soil for comparison against the HSL criteria provided in NEPM (2013). Therefore the assessment criterion adopted in this groundwater investigation was based on positive or negative identification of asbestos in collected soil samples, as well as identification of asbestos on site during fieldworks.

Management limits

NEPM (2013) Management Limits for TRH –Residential, parkland and public open space – Coarse soils

• These management limits have been adopted to provide a conservative screening level for the identification of any potentially hazardous TRH contamination on the site with respect to installation of utilities.

Preliminary Waste Classification

NSW EPA (2014) Waste Classification Guidelines: Part 1 Classification of Waste

- The guidelines provide criteria for assessing the appropriate waste classification and subsequent disposal location for solid wastes. The classification process for non-liquid wastes focuses on the potential for the waste to release chemical contaminants into the environment through contact with liquids (leachates).
- Should the waste be found (or reasonably suspected) to contain asbestos then the material should be classified as special waste mixed with general solid, restricted solid or hazardous waste (as applicable) and managed accordingly. A waste classification report for disposal of excess drilling spoil from this investigation is located in Appendix E.

4.2 Groundwater assessment criteria

Following a groundwater bore search, no groundwater extraction bores were identified within 500 m of the site and no likely drinking water receptors are identified. Little Blue Gum Creek is the closest receptor at 1.4 km west of the site, with the site itself surrounded by low density residential or commercial development. With reference to these potential exposure pathways and receptors, the following groundwater assessment criteria were adopted:

Ecological Criteria

NEPM (2013) Groundwater Investigation Levels (GILs); (ANZECC 2000) Freshwater Quality (low to medium reliability)¹

• The investigation levels for slightly – moderately disturbed fresh water aquatic ecosystems were adopted after consideration of the likely receptors of surface water leaving the site. A species protection level of 95% was adopted to reflect the urbanised setting of the area.

^{• &}lt;sup>1</sup> The ANZAST (2018) criteria were endorsed by NSW EPA under S105 of the CLM Act on 4 September 2018. At the same time the ANZECC (2000) water quality guidelines were revoked. While the ANZAST (2018) have been endorsed, preliminary review of these guidelines by GHD and others has identified a number of discrepancies with ANZECC (2000) which have yet to be clarified. As such, ANZECC (2000) criteria have still been adopted for the purposes of this report until the issues with ANZAST (2018) have been resolved.

• Where no criteria for an analyte are provided in the NEPM GILs, ANZECC low reliability criteria have been adopted.

Human Health Criteria

NEPM (2013) Groundwater Investigation Levels (GILs); NHMRC ADWG (2011, updated 2018) health and aesthetic guidelines

- Although no registered drinking water abstraction has been identified in the local area, this receptor has been considered in accordance with NSW EPA guidelines.
- The ADWG are presented for comparative purposes only, as it is expected that groundwater and surface water at or leaving the site is unlikely to be consumed by humans.

NEPM (2013) Health Screening Levels (HSLs) HSL-A & B for residential vapour intrusion risks associated with petroleum hydrocarbons

Various soil types were encountered at the site during the investigation. A conservative approach has been adopted, by adopting the screening levels applicable for coarse grained soil (i.e. sand) and a source depth of 2 to 4 m. This screening level reflects a more sensitive land use scenario than is proposed for the site, and is also protective of workers on-site in buildings as well as outdoors.

4.3 Aesthetic considerations

The site assessment requires balanced consideration of the quantity, type and distribution of foreign material or odours in relation to the specific land use and its sensitivity. The general assessment considerations include:

- That chemically discoloured soils or large quantities of various types of inert refuse, particularly if unsightly, may cause ongoing concern to site users.
- The depth of the materials, including chemical residues, in relation to the final surface of the site.
- The need for, and practicality of, any long-term management of foreign material.

5. Sampling and analysis program

5.1 General

The following section provides details of the sampling and analysis program that was developed to address the objectives and the scope of works for the project.

5.2 Workplace health and safety

GHD developed a site specific health safety and environment (HSE) Plan for the investigation works as part of the overall commitment to provide a healthy and safe working environment for staff and contractors. All work employed personal protection equipment (PPE) in accordance with GHD HSE requirements.

The HSE plan included a job safety and environment analysis detailing the step by step procedures of all aspects of the works and associated hazards and control measures to be implemented. The HSE plan was read by all GHD personnel, Council and subcontractors and feedback and discussion provided prior to the works commencing. A site specific pre-start safety assessment was conducted each morning before commencing works.

GHD also completed a site inspection prior to on-site intrusive works to finalise the proposed borehole locations, which included the following:

- Accessibility of each location was checked by GHD's site representative.
- Services clearance was undertaken by a professional underground services locator to further reduce the risk of intersecting subsurface services during the intrusive works, and Dial Before You Dig plans were also referenced.

5.3 Sampling locations and details

The following sections provide details of sampling locations at different stages of the investigation.

5.3.1 Soil Investigation

Intrusive soil investigations were conducted by GHD between 4 and 6 December 2018. The soil investigation works involved the drilling of three soil boreholes and the installation of two monitoring wells. The sampling locations are shown on Figure 2. Table 5 provides a summary of the investigation locations completed in this groundwater investigation.

	Coordinates (MGA 56)		Hole	Monitoring Well	Monitoring Well –
Location ID	Easting	Northing	Depth (m bgl)	Screening Interval (m bgl)	Screened Lithology
GHD_BH1	330354.31	6261252.00	24.85	17 to 23 m bgl	Sandstone
GHD_BH1A	330353.24	6261252.39	13.0	7 to 13 m bgl	Silty shales
GHD_BH2	330354.54	6261228.69	20.95	N/A (backfilled)	N/A

Table 5 Summary of soil investigation locations

N/A - not applicable

Borehole drilling

Three soil boreholes (BH) were drilled across the site. Investigation locations and their respective IDs are summarised in Table 5. Drilling was initially undertaken by hand augering

through shallow depths, followed by use of a truck mounted drilling rig with solid flight augers, and conventional diamond coring.

Two boreholes (BH1 and BH1A) were converted to monitoring wells (MW) as per Table 5. As discussed above drilling was undertaken using a truck mounted drilling rig.

Soil Sampling Method

Disturbed soil samples were collected from all soil sampling locations at the surface (0 to 0.2 m), 0.5 m, 1.0 m bgl and every half metre thereafter to auger refusal or to the top of the saturated zone. Additional samples were collected from cored sections in GHD_BH1 where olfactory evidence of contamination was suspected.

All samples were collected in accordance with GHD's Standard Field Operating Procedures to ensure that representative samples were collected, information was accurately recorded and quality control maintained throughout the investigation.

Soils penetrated during the investigation were described in general accordance with the Unified Soil Classification system, with features such as seepage, discolouration, staining, odours and other indications of contamination being noted.

A visual assessment was made of all samples for the potential presence of latent organic or asbestos contamination.

A small portion of soil was separated from each sample and placed in to zip lock bags for field vapour/headspace screening using a PID. Observed subsurface geological conditions, PID readings of collected soil samples and visual and olfactory evidence of potential contamination were recorded on the borehole logs.

Sample handling, storage and transportation

Samples for chemical analysis were immediately placed into glass jars, which were sealed with Teflon-lined plastic lids. Samples for asbestos screening analysis were placed into zip lock bags. Collected samples were then stored in ice-chilled cool boxes prior to and during transit to the nominated analytical laboratories.

Installation of groundwater monitoring wells

Groundwater monitoring wells, as listed in Table 5, were installed upon completion of drilling in selected boreholes. The monitoring wells were constructed using Class 18 PVC, 50 mm diameter casings and slotted screen sections. The well construction across the site comprised the following:

- The standpipe included a six metre section of slotted screen section at depths noted in Table 5, and solid casing sections from surface to the slotted screen
- Sand was used to backfill the well annulus around the screened section, from the base of the hole to 0.5 m above the top of the slotted screen.
- A bentonite plug up to 1.5 m was applied in the well annulus above the filter pack.
- Grout was used to backfill the remaining well annulus to 0.1 m bgl and the well annulus was secured with concrete.
- A gatic cover was used to protect the well at surface level.

The graphical depictions of the well construction details are presented in the borehole logs, (Appendix B).

5.3.2 Groundwater sampling

Groundwater sampling method

Prior to groundwater sampling, the selected groundwater monitoring wells were gauged (water level recorded). These wells were then purged until field analytes (pH, electrical conductivity (EC), redox potential (redox), dissolved oxygen (DO) and temperature) stabilised to within 10% between readings. Field analytes were measured with an appropriately calibrated field instrument. A calibration certificate for the instrument used is provided in Appendix C.

Following the stabilisation of the field analytes, the wells were sampled using the micro purge 'low flow' sampling method. Groundwater was purged until drawdown and physico-chemical parameters stabilised sufficiently for a representative sample to be collected.

All samples were collected in accordance with GHD's Standard Field Operating Procedures to ensure that representative samples were collected, information was accurately recorded and quality control maintained throughout the investigation.

5.4 Sample analytical program

Selected samples were submitted to the nominated NATA accredited laboratory (Eurofins|mgt, Sydney) for analysis for the contaminants of potential concern and a secondary laboratory (ALS) for duplicate analysis.

5.4.1 Soil analytical program

A summary of the soil analytical schedule is presented in Table 6.

Analyte	Number of primary soil samples analysed	Number of duplicate samples analysed	Total number of samples	Duplicate ratio	Trip Blanks	Trip Spikes
TRH	5	2	7	2:7	1	
BTEX	5	2	7	2:7	1	1
PAHs	5	2	7	2:7		
Phenols	5	2	7	2:7		
OCP/OPP	5	2	7	2:7		
PCBs	2	0	2	NA		
Metals (arsenic, cadmium, chromium, copper, iron, nickel, lead, zinc, mercury	5	2	7	2:7		
Asbestos	2	0	2	N/A		

Table 6 Summary of soil analytical program

5.4.2 Groundwater analytical program

A summary of the groundwater analytical schedule is presented in Table 7.

Analyte	Number of primary soil samples analysed	Number of duplicate samples analysed	Total number of samples	Duplicate ratio	Trip Blanks	Trip Spikes	Rinsate
TRH	4	2	6	1:3	1	1	2
BTEX	4	2	6	1:3	1	1	2
PAHs	4	2	6	1:3			2
Phenols	4	2	6	1:3			2
OCP/OPP	4	2	6	1:3			2
PCBs	1	1	2	1:2			1
Metals (arsenic, cadmium, chromium, copper, iron, nickel, lead, zinc, mercury	4	2	6	1:3			2

Table 7 Summary of groundwater analytical program

6. QA/QC data quality assessment

6.1 Overview

As identified in Section 3, GHD carried out the investigative works in accordance with robust QA/QC processes. These processes were undertaken in order to generate data that was as representative as possible of the prevailing site conditions at the relevant locations at the time of monitoring.

Information in relation to how these QA/QC processes have produced data that achieves this required outcome is provided in the following sections.

6.2 Field quality controls

6.2.1 General

All fieldwork was conducted in general accordance with GHD's standard field operating procedures, aimed at collecting all environmental samples using a set of uniform and systematic methods, as required by GHD's Quality Assurance system. Key requirements of these procedures included:

- Personnel completing the soil sampling and groundwater sampling works were appropriately trained and experienced.
- Appropriately trained and experienced staff documented site activities using notes on standard field forms such as daily and sampling logs.
- Decontamination procedures including the use of new disposable gloves for the collection of each sample, decontamination of any reusable sampling equipment between each sampling location and the use of dedicated sampling containers.
- Logging procedures all samples were described using the Unified Soil Classification System: Field Procedure.
- Calibration procedures all items field monitoring equipment were appropriately calibrated where applicable, and calibration sheets are provided (see Appendix C)
- Sample identification procedures collected samples were immediately transferred to sample containers of appropriate material and preservation for the required laboratory analysis. All sample containers were clearly labelled with a sample number, sample location, sample depth, sample date and sampler's initials. The sample containers were transferred to an esky for sample preservation prior to and during shipment to the testing laboratories.
- Chain of custody information requirements Chain-of-custody forms were completed and forwarded to the relevant testing laboratories for the collected samples as required.
- Duplicates were assessed by calculating the Relative Percentage Difference (RPD) between the primary and split / duplicate samples. These results are discussed in Sections 6.3.1 and 6.4.2.

6.2.2 Field quality control

Field quality control procedures used during the project comprised the collection and analysis of the following:

- Intra-laboratory (blind) duplicates: Comprise a single sample that is divided into two separate sampling containers. Both samples are sent anonymously to the project laboratory. Blind duplicates provide an indication of the analytical precision of the laboratory, but are inherently influenced by other factors such as sampling techniques and sample media heterogeneity. Blind duplicates were collected and analysed during the investigation at a frequency of at least 4%.
- Inter-laboratory (blind) duplicates: Comprise a single sample that is divided into two separate sampling containers. Both samples are sent anonymously to the project laboratory and an additional laboratory. Blind duplicates provide an indication of the analytical precision of the project laboratory, but are inherently influenced by other factors such as sampling techniques and sample media heterogeneity. Blind duplicates were collected and analysed during the investigation at a frequency of at least 40%.
- <u>**Rinsate:**</u> A sample collected from the laboratory-prepared, analyte-free water after it is used to rinse over decontaminated field sampling equipment. The rinsate sample is used to assess the adequacy of the decontamination process. Rinsate blanks should have no detectable concentrations of COPC. , Approximately one rinsate sample per day was taken from re-usable sampling equipment. All rinsate samples were analysed by the primary laboratory (Eurofins|mgt). These results are also discussed in 6.3.1 and 6.4.1
- <u>Trip blank:</u> A sample prepared by the primary laboratory, free of volatile contaminants. The trip blank accompanies the primary samples during transits from the site to the laboratory. The trip blank is analysed for BTEXN and TRH C₆-C₁₀ compounds, and results are used to assess the potential of cross-contamination of volatile contaminants during transportation of samples. Trip blanks should have no detectable concentrations of COPC. Approximately one trip blank was analysed per sample batch sent to the laboratory.
- <u>Trip spike</u>: A sample prepared by the laboratory containing pure deionised water spiked with known concentrations of the analytes of interest (including BTEXN and TRH C₆-C₁₀ compounds) to determine precision in the laboratory, and results are used to assess the potential of loss of volatile contaminants during transportation of samples. Adopted recovery limits are 70-130%

6.2.3 Laboratory programme

Laboratory Information

The primary laboratory used was Eurofins|mgt who have adopted their internal procedures and NATA accredited methods in accordance with their quality assurance system.

The secondary laboratory was Australian Laboratory Services (ALS) who have adopted their internal procedures and NATA accredited methods in accordance with their quality assurance system.

Laboratory QA/QC

Laboratory quality control procedures used during the project included:

<u>Laboratory Duplicate Samples</u>: The analytical laboratory collects duplicate sub samples from one sample submitted for analytical testing at a rate equivalent to one in twenty samples per analytical batch, or one sample per batch if less than twenty samples are analysed in a batch.

A laboratory duplicate provides data on the analytical precision and reproducibility of the test result.

Spiked Samples: An authentic field sample is 'spiked' by adding an aliquot of known concentration of the target analyte(s) prior to sample extraction and analysis. A spike documents the effect of the sample matrix on the extraction and analytical techniques. Spiked samples will be analysed for each batch where samples are analysed for organic chemicals of concern.

<u>Certified Reference Standards</u>: A reference standard of known (certified) concentration is analysed along with a batch of samples. The Certified Reference Standard (CRS) or Laboratory Control Spike provides an indication of the analytical accuracy and the precision of the test method and is used for inorganic analyses.

<u>Surrogate Standard / Spikes</u>: These are organic compounds which are similar to the analyte of interest in terms of chemical composition, extractability, and chromatographic conditions (retention time), but which are not normally found in environmental samples. These surrogate compounds are 'spiked' into blanks, standards and samples submitted for organic analyses by gas-chromatographic techniques prior to sample extraction. Surrogate Standard/Spikes provide a means of checking that no gross errors have occurred during any stage of the test method leading to significant analyte loss.

Method Blank: Usually an organic or aqueous solution that is as free as possible of analytes of interest to which is added all the reagents, in the same volume, as used in the preparation and subsequent analysis of the samples. The reagent blank is carried through the complete sample preparation procedure and contains the same reagent concentrations in the final solution as in the sample solution used for analysis. The reagent blank is used to correct for possible contamination resulting from the preparation or processing of the sample.

The individual testing laboratories conducted an assessment of their laboratory QA/QC programme internally; however the results were also independently reviewed and assessed by GHD.

Laboratory duplicate samples should return RPDs within the NEPM acceptance criteria of $\pm 30\%$. Percent recovery is used to assess spiked samples and surrogate standards. Percent recovery; although dependent on the type of analyte tested, concentrations of analytes and sample matrix; should normally range from about 70-130%. Method (laboratory) blanks should return analyte concentrations as 'not detected'.

6.3 Soil

6.3.1 Field QA/QC

As part of the GHD QA/QC program, one duplicate sample and one inter-laboratory duplicate sample were taken for GHD_BH1. In addition, two soil rinsate samples and a trip blank and trip spike sample were sent for analysis.

Soil RPDs

Relative percentage differences (RPDs) were calculated with the following criteria adopted for acceptability based on data quality objectives outlined in Section 3.

- RPDs have only been considered where at least one concentration of the duplicate pair is greater than ten times the estimated quantitation limit (EQL).
- GHD has adopted a nominal acceptance criterion of 30% RPD for field duplicates and splits for inorganics and a nominal acceptance criterion of 50% RPD for field duplicates and splits for organics.

- However, it is noted that these criteria will not always be achieved, particularly in heterogeneous soil or fill materials, or at low analyte concentrations. In such cases, this does not necessarily indicate a problem with the data.
- The soil RPD results are presented in Appendix I with the exceedances of the adopted acceptance criteria above discussed below.

The soils samples presented in Table 8 below were found to exceed the adopted acceptance criteria presented above.

Table 8 Soil RPDs - Exceedance of adopted assessment criteria

Primary Sample	Duplicate Sample	Analyte/s
BH1_0.5	BH1_0.5ID	Arsenic
BH1_0.5	BH1_0.5ID	Iron
BH1_0.5	BH1_0.5ID	Zinc

GHD has reviewed the data in respect of the identified RPD exceedances and notes the following:

- The vast majority of RPDs were within adopted criteria.
- The exceedances were recorded for inter-laboratory duplicates analysed by ALS. All duplicate samples analysed by Eurofins|mgt were within RPD limits for the same samples.
- The maximum concentration from duplicate pair results was adopted for the purposes of the assessment.
- Where RPD exceedances were recorded, both samples in a pair returned results well below the adopted human health criterion.

Soil rinsate

Two soil rinsate samples were taken from equipment used for soil sampling. No concentrations were reported above the relevant laboratory limit of reporting (LOR), indicating the potential for cross contamination between soil samples to affect the interpretation of soil data is very low, and acceptable.

Trip blank

One trip blank was sent to the laboratory during the investigation and was tested for BTEXN and TRH ($C_6 - C_{10}$). No concentrations were reported above the relevant laboratory limit of reporting (LOR), indicating the potential for volatile cross contamination to be low and acceptable.

Trip spike

One trip spike sample was sent to the laboratory during the investigation and tested for BTEXN and TRH ($C_6 - C_{10}$). All recoveries were within the nominated acceptance criteria.

6.3.2 Laboratory QA/QC

Holding Times

All analytes were extracted within the reported holding times of the laboratories.

Laboratory programme

The NATA certified laboratories utilised for this assessment (Eurofins|mgt and ALS) undertook their own quality assurance and quality control procedures for sample analysis. GHD has reviewed the internal laboratory control data provided within the laboratory reports (refer to Appendix F).

All quality assurance sample analysis undertaken by the laboratories passed their own quality assurance and control procedures.

6.3.3 Conclusion

Overall, the results of the QA/QC programme for soil are considered to indicate an acceptable degree of confidence in the analytical programme completed. The analytical data set for soil is considered to be valid and acceptable to base conclusions on the contamination status of the site.

6.4 Groundwater

6.4.1 Field QA/QC

As part of the GHD QA/QC programme, one inter-laboratory and one intra-laboratory field duplicate sample were analysed for four primary samples during the investigation.

Groundwater RPDs

Relative percentage differences (RPDs) were calculated with the following criteria adopted for acceptability based on data quality objectives outlined in Section 4:

- RPDs have only been considered where a concentration is greater than ten times the EQL.
- GHD has adopted a nominal acceptance criterion of 30% RPD for field duplicates and splits for inorganics and a nominal acceptance criterion of 50% RPD for field duplicates and splits for organics.
- However, it is noted that these criteria will not always be achieved, particularly in heterogeneous materials (such as waters impacted with NAPL), or at low analyte concentrations. In such cases, this does not necessarily indicate a problem with the data.

The groundwater RPD results are presented in Appendix I with the exceedances of the adopted acceptance criteria above shown in Table 9 and discussed below.

Primary Sample	Duplicate Sample	Analyte/s
BH5	QC02	Copper
BH5	QC02	Zinc

Table 9 Groundwater RPDs - Exceedances of adopted assessment criteria

GHD has reviewed the data in respect of the identified RPD exceedances and notes the following:

- The vast majority of RPDs were within adopted criteria.
- The exceedances were recorded for inter-laboratory duplicates analysed by ALS. All intralaboratory duplicate samples analysed by Eurofins|mgt were within RPD limits for the same samples.
- The maximum concentration from duplicate pair results was adopted for the purposes of the assessment.
- Where RPD exceedances were recorded, both samples in the pair returned results above the ANZECC 2000 Freshwater (95% ecological protection) adopted criterion. This uncertainty is not considered to impact the findings of the assessment.

Groundwater rinsate

Two groundwater rinsate samples were taken from equipment used for groundwater sampling. No concentrations were reported above the relevant LOR, indicating the potential for cross contamination between samples to affect the interpretation of groundwater data is very low.

Trip Blank

A single trip blank was sent to the laboratory during the investigation and was tested for BTEXN and TRH ($C_6 - C_{10}$). No concentrations were reported above the relevant LOR, indicating low and acceptable potential for volatile cross contamination during sample transport and handling.

Trip Spike

A single trip spike was sent to the laboratory during the investigation and was tested for BTEXN and TRH ($C_6 - C_{10}$). All recoveries were within the acceptance criteria.

6.4.2 Laboratory QA/QC

Holding times

All analytes for groundwater were extracted within the technical holding times of the laboratory.

Laboratory programme

The NATA certified laboratories utilised for this assessment (Eurofins|mgt and ALS) undertook their own quality assurance and quality control procedures for sample analysis. GHD has reviewed the internal laboratory control data provided within the laboratory reports (refer Appendix F).

All quality assurance sample analysis undertaken by the laboratories passed their own quality assurance and control procedures.

6.4.3 Conclusion

The results of the QA/QC programme for groundwater are considered to indicate that there is an acceptable degree of confidence in the data from the analytical programme completed. Overall, the analytical data set for groundwater is considered to be valid and acceptable to base conclusions on the contamination status of the site.

6.5 Summary of QA/QC assessment

Overall the QA/QC programme for soil and groundwater is considered to indicate an acceptable degree of confidence in the analytical programme completed. Overall, the combined analytical data set is considered to be valid and acceptable to base conclusions on the contamination status of the site.

7. Investigation results

7.1 Overview

Soil and groundwater data have been compared to the adopted assessment criteria presented in Section 4 for the purposes of assessing the potential risk posed by contamination to current and future users of the site. The tables detailed in Appendix E provide a comparison of the data to the adopted assessment criteria for soil, groundwater and landfill gas.

7.2 Field observations – soil and core

Three boreholes, GHD_BH1, GHD_BH1A and GHD_BH2 were drilled on site from 4 – 6 December 2018. Borehole logs are provided in Appendix B.

Natural rock and soils, where encountered reflect those detailed on the geological and soil landscape maps for the site and described in Sections 2.4.2 and 2.4.3. Minor fill (up to 0.2 m) in the form of imported gravelly sand material was observed in all sampling locations. Waste materials as a result of historical demolition activities were observed in all locations. Anthropogenic materials observed within the fill material include suspected asbestos containing materials (ACM) bitumen, concrete, terracotta and brick fragments.

At all locations, the depth of soil to weathered bedrock is approximately 0.2 - 2.5 m bgl The natural residual soil beneath the thin fill layer consists of clays weathered from the underlying shale and siltstone bedrock.

Competent bedrock was encountered in GHD_BH1 and GHD_BH2 from approximately 13 m bgl and consisted predominantly of sandstone layers with minor interlaminated shales and siltstones.

Fractures in core at GHD_BH1 and GHD_BH2 were commonly aligned along bedding planes at angles of 5 – 55 degrees to the horizontal core axis. Fault gouge along fracture planes was observed rarely, and no slickenstriations were observed, suggesting little movement along fracture planes. The sandstone was fairly competent with three to nine breaks per metre, and breaks were commonly only one millimetre wide. It is possible that some of the breaks were induced during the coring and handling process, and are not the result of ground movement.

7.2.1 Visual and olfactory indications of contamination

Fragments of suspected ACM were observed in surface fill material at all three boreholes. This is considered likely to be the result of the historical demolition of building materials located on the site prior to its development as the existing car park and as from the demolition of the house at 2 Bent Street. No naturally occurring asbestiform minerals were observed in the soil or core.

Photo-ionisation detector (PID) measurements were taken at 0.5 m intervals for the augered samples for each borehole, and additional PID measurements were taken along randomly selected fractures in the cored sections. High PID measurements taken from GHD_BH1 core were supported by olfactory evidence of hydrocarbons, and are suspected to be due to the use of hydrocarbon lubricant during drilling operations. This is supported by the chemical results discussed in Section 7.4.4.

7.3 Groundwater monitoring event

Groundwater well development was undertaken on 6 December 2018, and a subsequent groundwater monitoring event was undertaken at the site on 14 December 2018. Four wells were sampled, including GHD_BH1, GHD_BH1A, BH5 and BH6.

7.3.1 Depth to groundwater and flow direction

Groundwater levels were recorded in the six groundwater monitoring wells prior to sampling during the groundwater monitoring round conducted on 14 December 2018. Groundwater was encountered at between 4.20 and 8.99 m bgl. Groundwater level measurements are summarised in Table 10 below.

Monitoring Well ID	Standing Water Level (m bgl)	Top of Pipe (m AHD)	Natural surface elevation (m AHD)	Standing Water Level (m AHD)
GHD_BH1	8.998	94.67	94.73	85.68
GHD_BH1A	6.120	94.67	94.71	88.55
BH5	5.350	93.69	93.77	88.34
BH6	4.200	89.65	89.73	85.45

Table 10 Groundwater depth

It should be noted that GHD_BH1 was screened at a deeper interval to monitor the groundwater in the sandstone unit beneath the shale, and therefore groundwater is deeper for this well (in order to screen for dense non-aqueous phase liquids) than in the adjacent GHD_BH1A, which is screened in the higher shale unit.

As expected, the groundwater was intersected at a lower relative level (RL) in the wells towards the western end of the car park, and groundwater flow is inferred to follow the topography from east to west.

7.3.2 Groundwater quality

Groundwater was purged and sampled from the four monitoring wells in Table 10. Groundwater parameters were measured (i.e. DO, EC, pH, redox) prior to sampling and are summarised in Table 11. A copy of the groundwater sampling field sheets are provided in Appendix D.

Monitoring Well ID	Volume purged (L)	DO (ppm)	EC (µS/cm)	Redox (mV)	рН	Temp (°C)	Colour / Turbidity
GHD_BH1	6.0	0.27	3107	-17.4	5.96	19.8	Brown-grey with sediment
GHD_BH1 A	6.0	0.21	2935	-85.6	6.06	20.1	Brown, cloudy
BH5	8.0	0.28	491.9	89.3	5.52	20.7	Brown/grey cloudy. Possible sheen
BH6	6.0	0.16	720	165.1	5.23	19.1	Brown, cloudy

Table 11 Field-measured groundwater quality results

Stabilised field water quality analytes measured during monitoring indicated that groundwater at the site is slightly acidic with pH values ranging between pH 5.23 and pH 7.06.

The dissolved oxygen levels were recorded at low concentrations across the site ranging from 0.08 to 1.86 ppm, indicating anaerobic conditions.

Electrical conductivity readings indicate the water is fresh to brackish.

7.3.3 Visual and olfactory indications of groundwater contamination

No olfactory indicators were noted during the groundwater monitoring event, although a possible sheen was observed for BH5 potentially indicating the presence of hydrocarbons. This was not supported by the analytical results which are discussed further in Section 7.4.

7.4 Laboratory analytical results

A summary of the laboratory results for soil and groundwater samples collected from the site are presented in Appendix E and laboratory analytical certificates are provided in Appendix F.

7.4.1 Soil Chemical Assessment

There were only two exceedances of adopted criteria for the soils. These were both for zinc against the NEPM (2013) EIL for Urban Residential – Public Open Space, shown in Table 12 below.

Table 12 Soil criteria exceedances

Sample ID	Criterion Type	Added Contaminants Limit – Zinc (mg/kg)	Zinc exceedance (mg/kg)
GHD_BH1_0.2	EIL – Urban Residential – Open Space	70	160
GHD_BH2_0.1	EIL – Urban Residential – Open Space	70	150

The zinc concentrations elevated above the screening level in these two samples are potentially related to the natural soil characteristics of the fill material.

No measurement of soil pH, CEC or clay content were made for the site, as a result site specific EIL levels for copper, nickel and zinc have not been calculated. The lowest and therefore most conservative screening levels have been applied for the purposes of this assessment. It is noted that for a near neutral pH soil with a low CEC, the observed concentrations of zinc would likely be below a site specific EIL.

7.4.2 Asbestos

Chrysotile and amosite asbestos were detected in fibre cement fragments, and chrysotile asbestos was detected in loose fibre bundles from GHD_BH1 and GHD_BH2, confirming visual observations of suspected ACM fragments during drilling. No respirable fibres were detected. Both samples were taken from fill intervals at or just below surface. Soil sampling was not undertaken on GHD_BH1A, however suspected ACM fragments were noted during logging and, given its close proximity to GHD_BH1, the presence of ACM is considered likely.

7.4.3 Preliminary waste classification assessment

Two samples exceeded the NSW EPA (2014) General Solid Waste criteria for lead as shown in Table 13 below, and presented in Appendix E.

Analyte	Exceedance Trigger Value (mg/kg)	Sample ID	Analytical Value
Lead	100	GHD_BH1	200
		GHD_BH2	100

Table 13 Waste classification criteria exceedances

The preliminary and indicative waste classification indicates all samples collected from the bores are classified as General Solid Waste (GSW) according to the guidelines, with the exception of lead at GHD_BH1 and GHD_BH2. If a waste's specific contaminant concentration test value exceeds the contaminant (SCC) threshold value set for general solid waste (CT1), further assessment using the toxicity characteristic leaching procedure (TCLP) test may be used. Given the low levels of lead exceedance, it is likely that the TCLP would produce results that remain within the classification for GSW for these samples, however this would need to be confirmed by testing on waste streams produced during any development works.

Excess soils generated as a part of this investigation were secured within three drums on the site for storage before disposal. One representative sample was collected from the drums for laboratory analysis for waste classification purposes for off-site disposal. The waste classification sample results are provided in Appendix E.

The chemical concentrations from the drum soil sample (WC1) were compared to the NSW EPA (2014) General Solid Waste criteria The results showed that all metals and TPH concentrations detected were below the maximum values of specific contaminant concentrations (SCC) for classification without TCLP (CT1), with the exception of nickel which was 43 mg/kg. TCLP analysis was undertaken on sample WC1 for nickel with a concentration of 0.14 mg/L detected. This is below the maximum leachable concentration (TCLP1) criteria for nickel of 2 mg/L (Table 2 in the NSW EPA guidelines, 2014).

Asbestos was not detected in the waste classification sample, however, asbestos was detected in the two samples from GHD_BH1 and GHD_BH2 respectively. Given that the excess soil from these boreholes was collected in the waste drums, it is reasonable to assume the waste drums could contain asbestos materials.

Based on the results of the laboratory analyses, the waste classification in accordance with the NSW EPA (2014) *Waste Classification Guidelines* for the soil tested indicates the materials within the three drums were classified as: Special Waste (Asbestos waste). The drums were disposed of at a suitably licenced facility (see Appendix G for waste tracking documents).

7.4.4 Groundwater chemical assessment

A review of groundwater exceedances identified results above NEPM 2013 Fresh Water GILs for copper, lead, manganese, nickel, zinc and chromium. Exceedances are reported in Table 14 below and included in Appendix E.

No exceedances of NEPM 2013 HSL criteria were reported for the site.

Table 14 Groundwater criteria exceedances - ANZECC 2000 FW Medium-LowReliability, NEPM 2013 Table 1C GILs, Fresh Waters, NEPM 2013Table 1(A) HSL A/B Sand (2 - 4 m)

Analyte	Exceedance Trigger Value (mg/L)	Sample ID	Analytical Value (mg/L)
Copper	0.0014 ^{1, 2}	BH5 (QC02)	0.062
		BH6	0.022
		GHD_BH1A	0.057
Iron	0.3 ¹	BH5	3.2
		BH6	1.2
		GHD_BH1	44
		GHD_BH1A	58
Lead	0.0034 ^{1, 2}	BH5 (QC02)	0.004
Manganese	1.7 ^{1,}	BH5	3.7
	1.9 ²	BH6	5.5
		GHD_BH1	2.1
		GHD_BH1A	5.8
Nickel	0.011 ^{1, 2}	BH5 (QC02)	0.028
		BH6	0.047
		GHD_BH1	0.035
		GHD_BH1A	0.084
Zinc	0.008 ^{1, 2}	BH5 (QC02)	0.127
		BH6	0.14
		GHD_BH1	0.072
		GHD_BH1A	0.17
Chromium	0.001 ²	BH5	0.001
		BH6	0.002

1. ANZECC 2000 Fresh Water Medium-Low Reliability

2. NEPM 2013 Table 1C GILs, Fresh Waters

As outlined in Table 15 below, exceedances of the ADWG 2011 Aesthetic (v3.5 updated 2018) criteria are reported for iron and manganese for all samples. An aesthetic criterion is not provided in the ADWG for nickel.

Nickel and manganese analytical results were above ADWG 2011 Health (v3.5 updated 2018) criteria for all samples.

Analyte	Exceedance Trigger Value (mg/L)	Sample ID	Analytical Value (mg/L)
Iron	0.3 ¹	BH5	3.2
		BH6	1.2
		GHD_BH1	44
		GHD_BH1A	58
Nickel	0.02 ²	BH5 (QC02)	0.028
		BH6	0.047
		GHD_BH1	0.035
		GHD_BH1A	0.084
Manganese	0.1 ¹	BH5	3.7
	0.5 ²	BH6	5.5
		GHD_BH1	2.1
		GHD_BH1A	5.8

Table 15 Groundwater criteria exceedances – ADWG 2011 (updated 2018) Aesthetic values, ADWG 2011 (updated 2018) Health values

1. ADWG 2011 Aesthetic (v3.5 updated 2018)

2. ADWG 2011 Health (v3.5 updated 2018)

Further discussion of the risk from these chemicals is discussed in Section 8.

8. Discussion of results and conceptual site model

8.1 Assessment of exposure risks for on-site receptors

8.1.1 Soils

Ecological

There were two occurrences of zinc exceeding the NEPM 2013 EIL for Urban Residential / Public Space. Both of these samples were taken at near surface at the base of fill and are likely to represent soil components of the fill material. No elevated levels of zinc were found in the underlying soils and it is therefore considered unlikely that zinc is leaching down through the soil profile, and does not pose a risk to potential ecological receptors.

Background ranges of zinc in soil, taken from the Field Geologist's Manual, compiled by D.A. Berkman, Third Revised Edition (1995), indicate the average abundance of zinc in shale is 160 parts per million, and zinc in soil is 300 ppm. The zinc analysed in soils on site is therefore likely attributable to background levels, rather than indicative of contamination.

Schedule B2 of the NEPM (2013) notes that "a pragmatic risk based approach should be taken in applying EILs and ESLs in residential and commercial/industrial land use settings". As a result EIL exceedances are considered very unlikely to present a constraint to the planned site use, and remediation in this respect is not considered to be warranted.

Human Health

Based on the criteria discussed in Section 4.1, there were no exceedances of adopted human health criteria (for non-asbestos contamination) on site.

Council have advised GHD that in all variations of the master plan for the proposed redevelopment, the planned childcare centre is not at ground level and any outdoor areas associated with it are confined to rooftops or elevated terraces. A conservative approach was adopted to reflect the uncertainty of the plans, and irrespective of the location of the childcare centre, there are no chemical COPC of potential human health concern.

Asbestos

The presence of chrysotile and amosite asbestos in fibre cement fragments and fibre bundles was confirmed by laboratory analysis of two fill samples. Neither sample contained respirable asbestos fibres. The source of the asbestos is likely due to demolition waste of the house at 2 Bent Street, and the properties that were demolished prior to development of the existing car park. It is anticipated that additional asbestos may be present in fill at the site and will require management and/or removal during site development. It is noted that the non-bonded (i.e. fibrous asbestos) was detected in fill below hardstand, and as such there is unlikely to be a current complete source-pathway-receptor linkage to current site users. However there is a potentially complete linkage for future maintenance workers and construction workers coming into contact with fill materials. There is also potential for migration of asbestos via dust generation during future construction work.

The asbestos is likely constrained to the fill layer across the site. A sampling program to assess the extent of ACM is recommended during site clearance to assess the volume of soil requiring specialist disposal.

Disposal of soil waste containing asbestos will require classification of the waste as: Special Waste (Asbestos Waste) and require removal by a licenced waste disposal contractor to a suitable licenced facility.

Summary

With consideration of the investigation findings, no evidence of soil impacts from the dry cleaning business or the electrical substation were found during this investigation. However, it is likely that fill soils across the site contain some asbestos and will require management and validation via visual clearance by a licenced asbestos assessor during development. The risk posed by asbestos during construction will require management under a Construction and Environmental Management Plan (CEMP).

8.1.2 Groundwater

Exceedances of freshwater GILs are noted at all groundwater monitoring locations for copper, lead, manganese, nickel, zinc and chromium. There are no identified ecological receptors on–site therefore, these exceedances are considered to constitute an acceptable level of risk for the site.

No groundwater is currently or proposed to be abstracted on-site for drinking water, and it is not anticipated that the groundwater sampled will be used for drinking water purposes. The use of the drinking water guidelines provide a conservative approach to assessing human health risks associated with direct interaction with the water. Therefore, although there are some exceedances of iron, nickel and manganese ADWG health and aesthetic values, they are not considered significant to the current and proposed site usage. These metal exceedances are considered more likely to be indicative of background quality of marine shale aquifers, as opposed to contamination.

At present there is no groundwater abstraction on site for any purpose, and there is no existing source-pathway-receptor linkage for contaminants identified in groundwater to current or future receptors. Incidental interaction with groundwater during the construction of the proposed site redevelopment is also likely to be low risk, but should be identified through occupational health and safety management plans, which would be expected to include measures such as personal protective equipment (PPE) and good hygiene practises (e.g. hand washing). In the longer term, the potential for future abstraction of groundwater at the site for potable purposes is considered unlikely given the availability of a reticulated potable water supply.

With consideration of the above, the likelihood for groundwater at the investigated location to constitute an unacceptable risk to current and potential on-site receptors is considered to be low and acceptable.

8.2 Assessment of exposure risks to off-site receptors and from off-site sources

8.2.1 Soils

Based on the hardstand cover existing across the majority of the site, and the grassed and vegetated cover in the remaining areas, the potential for impacts to off-site receptors is considered to be limited.

Potential for movement of soil contaminants off site via windblown dust or surface runoff is limited. As such, there is not considered to be a complete source-pathway-receptor linkage for off-site receptors of soil contamination and the off-site exposure risk is considered to be low. However, as noted above the potential for asbestos migration via dust generation during construction will require management under a CEMP.

The closest potential off-site sources of soil contamination are Marcus Dry Cleaning business located at 346 Pacific Highway, Lindfield, and the electrical substation located at the southern end of the site on Beaconsfield Parade, Lindfield. No exceedances of COPC related to these potential contamination sources were observed during this investigation.

8.2.2 Groundwater

Exceedances of ANZECC 2000 (95%) and freshwater GILs are noted at all groundwater monitoring locations for copper, lead, manganese, nickel, zinc and chromium.

Ecological receptors to the site are limited as the site and surrounding area have been heavily disturbed by historical activities. The eventual ecological receptor of the site is the Little Blue Gum Creek, which is approximately 1.4 km west of the site at the closest point.

The distance between the site and potential receptors, the low levels of identified groundwater contaminants and the impacted land between the site and the receptors are considered to result in the overall risk posed by groundwater contamination on site to off-site ecological receptors being low and acceptable.

No abstraction bores for drinking water have been identified on or in the vicinity of the site, while the site and the surrounding area have access to the Sydney town water supply.

Overall the potential for off-site exposure risk is considered low given:

- Limited number and small magnitude of exceedance groundwater contaminants which are likely indicative of background metal concentrations
- The generally urbanised land surrounding the site, with associated diffuse sources of groundwater pollution;
- Absence of groundwater abstraction in the surrounding area
- Distance to potentially more sensitive down gradient receptors in the Little Blue Gum Creek (1.4 km to the west) and the Lane Cover River (1.9 km south-west).

As for the soils, the closest potential off-site sources of groundwater contamination are Marcus Dry Cleaning business located at 346 Pacific Highway, Lindfield, and the electrical substation located at the southern end of the site on Beaconsfield Parade, Lindfield. No exceedances of COPC related to these potential contamination sources were reported during this investigation.

In addition, there is a 7-Eleven service station (former Mobil) site, located approximately 300 m south of the site at its closest point. Based on results at BH5 which is at the southern end of the site, and the local topography which suggest groundwater from the 7-Eleven site is not likely to flow towards the site, there does not appear to be any impact to groundwater related to this potential off-site source of contamination.

8.3 Risks to services and buried structures

Certain contaminants, such as TRH and other organic compounds, pose a potential risk to buried services, including via the permeation of water supply pipes. Overall, the risk from identified soil and groundwater contamination to current and proposed site services and buried structures is considered negligible.

8.4 Remaining data gaps

- The extent of asbestos contamination in fill across the site is currently unknown. Given the likelihood that soils across the site are impacted by asbestos, further asbestos investigation will be required during construction and the risk posed by asbestos during construction will require management under a Construction and Environmental Management Plan (CEMP).
- The level of airborne and soil asbestos contamination has not been determined, and will require consideration during construction to assess the requirement for the Duty to Report at that time.

8.5 Duty to report

The NSW EPA (2015) Guidelines on the Duty to Report Contamination under the *Contaminated Lands Act 1997* require notification under the following circumstances:

- The level of the contaminant in, on, or under the soil is equal to or above a level of contamination set out in Schedule B1 of the NEPM (2013) or other approved guideline value with respect to a current or approved use of the land, and people have been, or foreseeably will be, exposed to the contaminant; or
- The contamination meets a criterion prescribed by the regulations; or
- The contaminant or a by-product has entered, or will foreseeably enter, neighbouring land, the atmosphere, groundwater or surface water, and is above, or will foreseeably be above, a level of contamination set out in the NEPM (2013) or other approved guidelines and will foreseeably continue to remain equal to or above that level.

The NSW EPA (2015) guidelines also state that there is no duty to report under the following conditions:

- widespread diffuse urban pollution that is not attributed to a specific industrial, commercial or agricultural activity
- sites with contaminants that are at levels above the triggers but are equal to, or below, the ambient background concentration

With regard to asbestos in, or on, soil, the EPA guidelines state that notification is required where:

• friable asbestos is present in or on soil on the land

AND

 the level of asbestos (% weight for weight) in an individual soil sample is equal to or above the health screening level of friable asbestos in soil (0.001%) specified in Section 4.8, Schedule B1 of the National Environment Protection (Assessment of Site Contamination) Measure 1999 (NEPC 2013)

AND

• a person has been, or foreseeably will be, exposed to elevated levels of asbestos fibres by breathing them into their lungs

Laboratory testing identified loose fibre bundles of asbestos in a sample from GHD_BH2, which meets the definition of friable asbestos (NEPM, 2013). This soil asbestos contamination is considered to result from poor demolition practices, and meets the first reporting trigger. With regard to the second trigger, the concentration of asbestos in an individual sample has not been tested and is therefore unknown. No airborne asbestos testing has been undertaken to determine the exposure levels, however, the site is covered by hardstand or grass and it is considered unlikely that airborne levels would exceed the concentration criterion in the guidelines under current site use.

In addition, according to the Department of Health (2009) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia, if concentrations of asbestos fines (AF) and fibrous asbestos (FA) might exceed 10% of the amount of asbestos as would be determined by using ACM alone, it is deemed to be significant. The guidelines state "If AF arises from co-located ACM, DOH considers that this will not exceed 10% of the ACM even if the ACM is primarily very small pieces arising from severe mechanical action." In this instance, the fibre bundle was detected at the same location as ACM fragments, and is therefore considered to be co-located. As such it is considered unlikely that friable asbestos at the site will exceed 10% of the total asbestos on site, and therefore would not be deemed to be significant.

Based on the currently available information on the site, and in accordance with the NSW EPA (2015) requirements with regards to duty to report a contaminated site, it is GHD's opinion that there is presently insufficient evidence to trigger a duty to report requirement for this site.

9.1 Conclusions

Based on a review of available previous site investigation data supplied by Council, information contained within this assessment, and with reference to the objectives outlined in Section 1.1, the following conclusions are made (subject to the limitations outlined in Section 1.3):

- Drilling identified soil profiles and stratigraphic units consistent with weathered shales and sandstones of the Wianamatta Group, and also consistent with the findings of previous drilling investigations at the site. Site soils typically consist of mid grey-brown fine grained clays and silty clays.
- Minor gravelly-sandy fill and anthropogenic materials (up to 0.2 m bgl) were intersected in all holes, and are superimposed on a soil weathering profile up to 2.5 m bgl, which overlies weathered bedrock and fresh sandstone and shale bedrock.
- The predominant bedrock encountered at all three locations was competent sandstone (probable Ashfield Shale) with minor bands of interlaminated shales and siltstones. Fracturing, where present, was generally aligned along bedding planes and consisted of three to nine breaks per metre. No significant fault gouge was encountered.
- Asbestos in the form of ACM fragments or fibre bundles was confirmed in fill material at two
 of the three boreholes and is likely the result of the historical and recent demolition of
 buildings containing fibre cement.
- A review of historical aerial photographs, and preliminary waste classification of soils encountered during the investigation indicate that fill material across the site is likely to contain asbestos. Soil containing asbestos will likely be classified be as Special Waste (Asbestos waste) for the purpose of off-site disposal. Where material needs to be removed off-site a more detailed waste classification and chemical assessment will need to be conducted to allow appropriate disposal of the materials
- There were no exceedances of the relevant human health criteria for non-asbestos contaminants.
- The exceedances of ecological criteria for soils (zinc) were limited to the surface fill
 materials (0.1 0.2 m bgl) and are in line with background levels for zinc expected for this
 area. No exceedances were detected in samples analysed from below these depths, which
 indicates that the metal impacts are not leaching and unlikely to be a risk to local
 groundwater.
- The ADE (2016) investigation found some soil samples that exceeded given ecological criteria, however, GHD did not identify any on-site ecological receptors and, based on the results of this groundwater investigation, it is not considered that the metal impacts identified within the fill material at the site are significant enough to warrant remediation in the context of the proposed use.
- Groundwater was intersected between 4.20 m bgl in BH6, to 8.99 m bgl in GHD_BH1. Groundwater levels relative to AHD, indicate groundwater is highest in the east of the site at GHD_BH1A, and follows topography down towards the west of the site at BH6.
- Based on information provided to GHD by Council, it is understood that basement depth of the proposed development would be approximately 24 m bgl in the vicinity of GHD_BH1, and 20 m bgl in the vicinity of BH5. Given that groundwater was intersected at levels significantly shallower than this, it is expected that groundwater will be encountered during developments works, and dewatering will be required.

- Exceedances of freshwater GILs are noted at all groundwater monitoring locations for copper, lead, manganese, nickel, zinc and chromium. There are no ecological receptors identified on site or within the immediate within the vicinity of the site, therefore, these exceedances are deemed to constitute an acceptable level of risk for the site in the context of the current and proposed use.
- Groundwater is not abstracted within the vicinity of the site for any purpose, and there is considered to be no plausible source-pathway-receptor linkage for contaminants identified in groundwater to current or future receptors.
- As no other on-site ecological receptors were identified in the groundwater investigation and the metals impacts identified are unlikely to be migrating off-site, there is unlikely to be a pathway for the contamination to reach an ecological receptor. The risk to potential ecological receptors would therefore be considered to be minimal.
- Based on the currently available information on the site, and in accordance with the NSW EPA (2015) requirements with regards to duty to report a contaminated site, it is GHD's opinion that there is presently insufficient evidence to trigger reporting of this site to EPA.
- Based on the findings of this investigation, GHD do not consider that there is a need to prepare a standalone Remedial Action Plan (RAP) for site redevelopment.

9.2 **Recommendations**

Based upon the findings of this investigation as outlined above, the following recommendations are made in order to further assess or mitigate contamination risks associated with the site:

- Develop a Construction Environmental Management Plan (CEMP) during construction to manage soils and groundwater, including a plan for investigating and managing asbestos in site fill material and a dewatering plan for the site for development below the groundwater table. This plan will provide guidance on minimising contamination impacts to site workers, occupants and off-site receptors as a result of construction.
- A sampling program to assess the extent of asbestos in fill is recommended during site clearance to assess the volume of soil requiring specialist disposal. Disposal of soil waste containing asbestos will require classification of the waste as: Special Waste (Asbestos Waste) and require removal by a licenced waste disposal contractor to a suitable licenced facility.
- Following removal of asbestos impacts, all ground surfaces should be the subject of a visual clearance by a licenced asbestos assessor.
- While the presence of asbestos is considered unlikely to pose an unacceptable risk to current site users in the existing configuration in the short term prior to site redevelopment, GHD recommends that Council implement an Asbestos Management Plan for any intrusive works which may disturb fill material at the site.

10. References

ADE Consulting Group (2016). *Phase II Detailed Site Investigation. Lindfield Community Hub, Lindfield NSW.*

Asset Geotechnical (2016). *Proposed Mixed Use Development Lindfield Community Hub Project. Report on Geotechnical Investigation.*

Berkman D. A. (1995). Field Geologist's Manual, Third Revised Edition.

Chapman GA & Murphy CL, 1989. Soil landscapes of the Sydney 1:100,000 Sheet.

Department of Health (2009). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia – May 2009

GHD Pty Ltd, 2018. *RFQ* 79-2018 Proposal for Lindfield Village Hub, Groundwater Testing Services, dated 31 October 2018.

NEPM. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999, Amendment 2013, Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guidelines on Site Characterisation. National Environment Protection Council.

NHMRC ADWG (2011) Australian Drinking Water Guidelines (2011) Version 3.5 – Updated August 2018, National Health and Medical Research Council

NSW EPA (2015). Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997, September 2015

NSW OEH. (2011). *Guidelines for Consultants Reporting on Contaminated Sites*. NSW Office of Environment and Heritage, OEH 2011/0650, August 2011.

Appendices

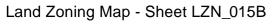
 $\textbf{GHD} \mid \textbf{Report for Ku-ring-gai Council} - \textbf{Groundwater Investigation, 2127850} \mid 50$

Appendix A - Figures

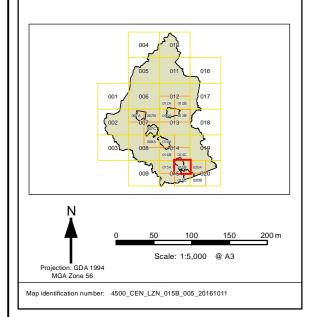
LEGEND Site Boundary (Approximate) Roads

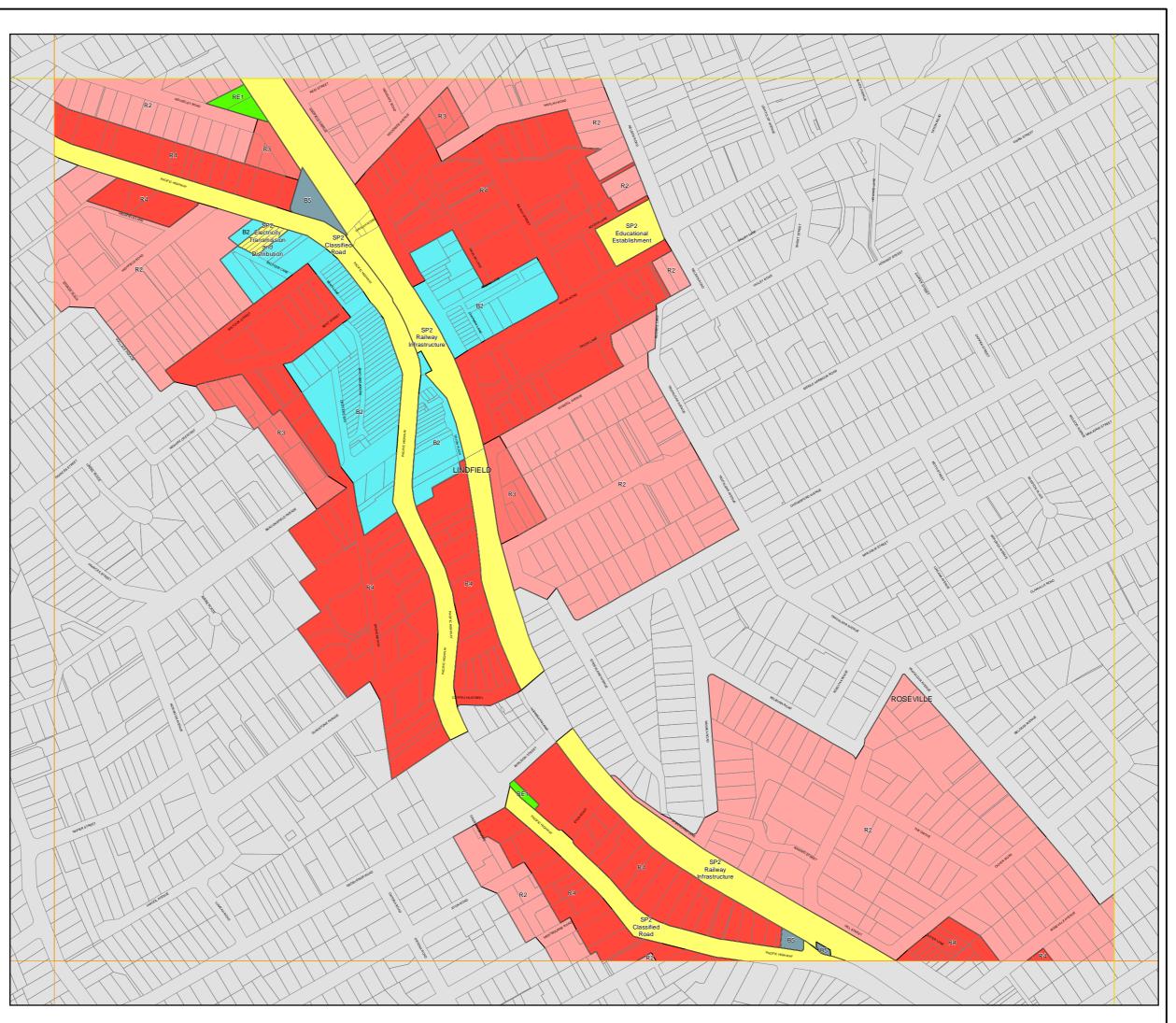
Railway

Ci21/27850/GIS\Maps\Deliverables\21_27850_Z001_LINDFIELD_Site_Location_Plan.mxd Level 15, 133 Castlereagh Street Sydney NSW 2000 T612 9239 7100 F612 9239 7199 E sydmail@ghd.com.au Www.ghd.com.au © 2018. Whilst every care has been taken to prepare this map, GHD (and Sixmaps 2018, NSW Department of Lands) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: Aerial imagery - sixmaps 2018, NSW LPI DTDB 2012 and 2015. Created by:tnham



G:\21127850\GISIMaps\Deliverables\21_27850_Z002_LINDFIELD_Investigation_Locations.mxd © 2018. Whilst every care has been taken to prepare this map, GHD (and Sixmaps 2018, NSW Department of Lands) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, for or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: Aerial imagery - sixmaps 2018, NSW LPI DTDB 2012 and 2015. Created by:thham


Ku-ring-gai Local Environmental Plan (Local Centres) 2012



Cadastre

Cadastre 11/10/2016© Land and Property Information (LPI)

Ku-ring-gai Local Environmental Plan 2015

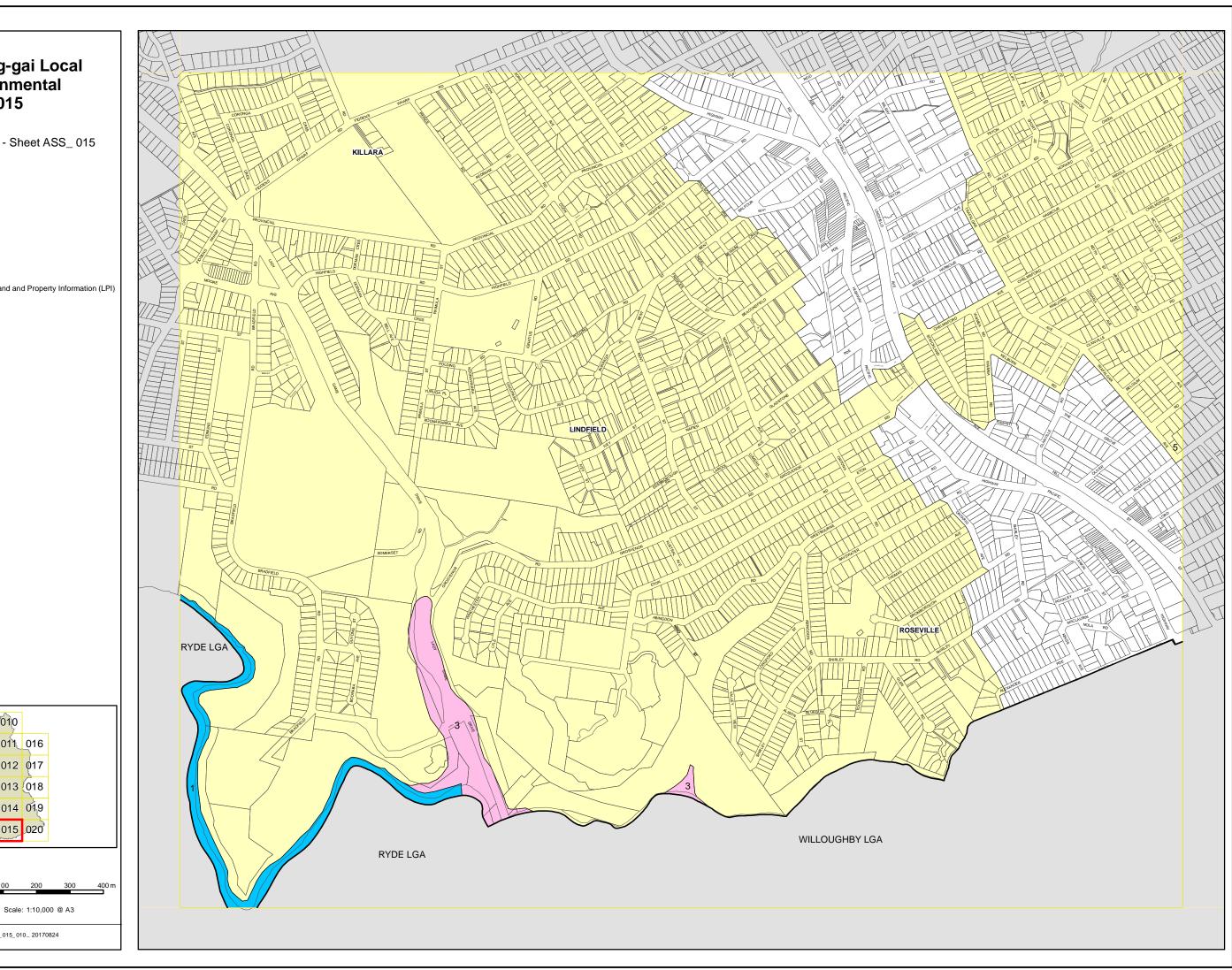
Acid Sulfate Soils Map - Sheet ASS_ 015

Acid Sulfate Soils

Cadastre

Cadastre 24/08/2017© Land and Property Information (LPI)

004 010


001 006 012 017 002 007 013 018 003 008 014 019

005 011 016

009 015 020

Projection: GDA 1994 MGA Zone 56

Map identification number: 4500_COM_ASS_015_010_ 20170824

Appendix B – Soil borehole logs

SOIL DESCRIPTION

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/global/services/geotechnical/

This procedure involves the description of a soil in terms of its visual and tactile properties, and relates to both laboratory samples and field exposures as applicable. A detailed soil profile description, in association with local geology and experience, will facilitate the initial (and often complete) site assessment for engineering purposes.

The method involves an evaluation of each of the items listed below and is in general agreement with both Australian Standard AS 1726 (the Site Investigation Code) and ASTM D2487 and D2488.

MOISTURE

The moisture condition of the soil is most applicable for cohesive soils as a precursor to the assessment of consistency and workability. The moisture condition is described as:-

Dry (dusty, dry to the touch) Slightly Moist Moist (damp, no visible water) Very Moist or Wet (visible free water, saturated condition)

In addition, the presence of any seepage or free water is noted on the testhole logs.

COLOUR

Colour is important for correlation of data between testholes and during subsequent excavation operations. The prominent colour is noted, followed by (spotted, mottled, streaked etc.) then secondary colours as applicable. Colour is usually described at as-received moisture condition, though both wet and dry colours may also be appropriate.

CONSISTENCY / DENSITY INDEX

This assessment is based on the effort required to penetrate and/or mould the soil, and is an indicator of shear strength.

Granular soils are generally described in terms of density index as listed in AS 1726. These soils are inherently difficult to assess and normally a penetration test procedure (SPT, DCP or CPT) is used in conjunction with published correlations. Alternatively, in-situ density tests can be conducted in association with minimum and maximum densities performed in the laboratory.

Term	Symbol	Density Index (%)
Very Loose	VL	< 15
Loose	L	15 - 35
Medium Dense	MD	35 - 65
Dense	D	65 - 85
Very Dense	VD	>85

Cohesive soils can be assessed by direct measurement (shear vane, CPT etc), or estimated approximately by tactile means and/or the aid of a geological pick as given on the following table. It is emphasised that a "design shear strength" must take cognisance of the mode of testing and the in-situ moisture content with the possible variations of moisture with time.

Term	Symbol	Tactile Properties	Undrained Strength S _u (kPa)
Very Soft	VS	Extrudes between fingers when squeezed in hand	<12
Soft	S	Easily penetrated by thumb about 30-40 mm. Pick head can be pushed in up to shaft.	12-25
Firm	F	Penetrated by thumb 20-30mm with moderate effort. Sharp end of pick pushed in 30-40mm.	25-50
Stiff	St	Indented by thumb about 5mm with moderate effort. Pick pushed in up to 10mm.	50-100
Very Stiff	VSt	Readily indented by thumb nail. Slight indentation produced by pushing pick into soil.	100-200
Hard	н	Difficult to indent with thumb nail. Requires power tools for excavation.	>200

STRUCTURE/OTHER FEATURES

The soil structure is generally applicable to cohesive soils and mainly refers to the presence or absence of joints and layering. Typical terms use are intact (no joints), fissured (closed joints), shattered (open joints), slickensided (polished joints indicative of movement), and stratified/laminated. In addition, the presence of other features (ferricrete nodules, timber inclusions) should also be noted as applicable.

For granular soils, an assessment of grading (well, uniform or poor), particle size (fine, medium etc.) and angularity and shape may also be given.

SOIL TYPE

The soil is described in terms of its estimated grain size composition and the tactile behaviour (plasticity of any fines (less than *0.06 mm)). This system does not differentiate on grading below 0.06 mm, in accordance with the Unified Soil Classification (USC) procedure.

However, in some situations a soil can exhibit different characteristics between the undisturbed and disturbed/remolded condition (eg. 'sand' sized particles which break down a clay). The Soil Type generally relates to the latter state but the former condition should be noted where applicable. Furthermore, as most natural soils frequently are combinations of various constituents, the primary soil is described and modified by minor components. In brief, the system is as follows:-

	Coarse Grained Soils		Fine Grained Soils
% Fines	Fines Modifier		Modifier
<5	omit, or use "trace"	<15	omit, or use "trace"
5-12	describe as "with clay/silt" as applicable	15-30	described as "with sand/gravel" as applicable
>12	prefix soil as "silty/clayey" as applicable	>30	prefix soil as "sandy/gravelly" as applicable

(*The 200# sieve (0.075 mm) is commonly used in practice to differentiate between fine and coarse grained soils).

Note: For soils containing both sand and gravel the minor coarse fraction is omitted if less than 15%, or described as "with sand/gravel" as applicable when greater than 15%.

The appropriate USC symbol may also be given after the soil type description in accordance with ASTM D2487 and D2488.

ORIGIN

An attempt is made, where possible, to assess origin (transported, residual, pedogenic, or fill etc.) since this assists in the judgement of probable engineering behaviour. This assessment is generally restricted to field logging activities. An interpretation of landform is a useful guide to the origin of transported soils (e.g. colluvium, talus, slide debris, slope wash, alluvium, lacustrine, estuarine, aeolian and littoral deposits) while local geology and remnant fabric will assist identification of residual soils.

ROCK DESCRIPTION

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/global/services/geotechnical/

This method is based on Australian Standard AS 1726 and is orientated to the field logging of diamond drill core, but may be used for the profiling of natural exposures and cuttings, as applicable. The procedure involves a visual and tactile assessment of the rock mass and the nature of defects within it in order to facilitate a prediction of engineering behaviour.

DESCRIPTION: Rock Type is described on the basis of origin (sedimentary, metamorphic and igneous) with the common types listed below:-

	Sedim	entary		Metamorphic			Igneous		
Clastic	Non clastic (chemical)	Non clastic (organic)	Pyroclastic			Acid	Intern	nediate	Basic
Conglomerate Sandstone Siltstone Shale Claystone	Limestone Chert Gypsum Salt	Coal Some Limestone	Tuff Agglomerate Volcanic Breccia	Slate Phyllite Schist Quartzite Gneiss	Extrusive Intrusive (medium grained) (coarse grained)	Rhyolite Quartz Porphyry Granite	Trachyte Porphyry Syenite	Andesite Porphyrite Diorite	Basalt Dolerite Gabbro

<u>Colour</u> is given to assist in rock identification and the interpolation of field data. Colour is usually described at as-received moisture condition, though both wet and dry colours may also be appropriate.

<u>Texture</u> refers to the degree of crystallinity and granularity (grain size) and the fabric relationship between the constituents of a rock. Often only <u>grain size</u> is given for simplified descriptions of certain sedimentary rocks.

<u>Structure</u> and texture are commonly used synonymously in describing rocks since there is no clear delineation between terms. In general, structure refers to large-scale features recognisable in the field (banding, lineation, massive, porphyritic, schistose etc.). For sedimentary rocks in particular, the thickness of sedimentary layering (bedding) is described as:-

Thinly laminated	<6mm	very thinly bedded	20-60mm	medium bedded	0.2-0.6m	very thickly bedded	>2m
Laminated	6-20mm	thinly bedded	60-200mm	thickly bedded	0.6-2m		

In addition, mineral composition, hardness, alteration, cementation is given as applicable.

WEATHERING: The assignment of weathering is somewhat subjective. Weathering assists identification and does <u>not</u> imply engineering behaviour. No distinction is drawn between chemical weathering and alteration for most engineering purposes. These procedures are collectively described as "weathering" using the following terms which do not describe the related strength change. This system is general, and in this format may not apply to all rock types. Carbonate rocks generally do not conform to this classification.

Term	Symbol	Definition
Completely Weathered	CW	Residual soil with rock fabric not visible.
Extremely Weathered	EW	The rock exhibits soil-like properties though the texture of the original rock is still evident.
Highly Weathered	HW	Limonite staining or colour change affects the whole of the rock mass and other signs of chemical or physical decomposition are evident.
Moderately Weathered	MW	Staining extends throughout the whole of the rock mass and the original colour is no longer recognisable.
Slightly Weathered	SW	Partial staining or discolouration of the rock mass, usually by limonite, has taken place.
Fresh	Fr	Rock mass unaffected by weathering.

ESTIMATED STRENGTH: This refers to the strength of the rock substance and not that of the rock mass. The strength of the rock substance is estimated by the Point Load Strength Index $I_{S}(50)$ and refers to the strength measured in the direction normal to the bedding for sedimentary rocks. A field guide is given below:-

Term	Symbol	I _S (50)	Field Guide
		MPa	(The core refers to a 150mm long x 50mm dia. sample)
Extremely Low	EL	< 0.03	Remoulded by hand to a material with soil properties.
Very Low	VL	0.03-0.1	May be crumbled in the hand. Sandstone is "sugary" and friable.
Low	L	0.1-0.3	The core may be broken by hand and easily scored with a knife. Sharp edges of core may
			be friable and break during handling.
Medium	M	0.3-1.0	The core may be broken by hand with considerable difficulty. Readily scored with knife.
High	Н	1-3	The core cannot be broken by unaided hands, can be slightly scratched or scored with knife.
Very High	VH	3-10	The core may be broken readily with hand held hammer. Cannot be scratched with knife.
Extremely	EH	>10	The core is difficult to break with hand held hammer. Rings when struck with a hammer.
High			

DEFECTS: This important feature can control the overall engineering behaviour of a rock mass. All types of <u>natural</u> fractures across which the core is discontinuous are noted. These fractures include bedding plane partings, joints and other defects but exclude artificial fractures such as drilling breaks. The nature of the defects (joints, bedding partings, seams, zones and veins) is also noted with description, orientation, infilling or coating, shape, roughness, thickness, etc. given generally in accordance with AS 1726. The spacing of natural fractures <u>excludes</u> bedding partings unless there is evidence that they were separated prior to drilling. This notwithstanding, bedding partings maybe considered as planes of weakness in an engineering assessment.

CORE LOG SHEET NOTES

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/global/services/geotechnical/

The intention of Core Log Sheets is to present factual information measured from the core or as recorded in the field. Some interpretative information is inevitable in the location of core loss, description of weathering and identification of drilling induced fractures. This should be noted in the use of Core Log Sheets and remembered in their utilisation.

DRILLING AND CASING

The types of drilling used to advance the drill hole are recorded for relevant intervals. The types of drilling may include: NMLC coring, NQTT (NQ triple tube wire line), HW, HX, NW and NX casing, wash boring (tri-cone roller bit, TC drag bit, TC blade bit), or auger drilling (V-bit, TC drag bit).

The relevant progress is shown by abbreviated dates in the column.

WATER

Water lost or water made during drilling is recorded and subsequent readings of water levels in the borehole or piezometers are recorded here with dates of observation.

DRILL DEPTH AND CORE LOSS

Drilling intervals are shown by depth increments and horizontal marker lines. Core loss is measured as a percentage of the drill run. If the location of the core loss is known or strongly suspected, it is shown in a region of the column bounded by dashed horizontal lines. If unknown, core loss is assigned to the bottom of a coring run.

SAMPLES AND FIELD TESTS

The location of samples taken for testing or the location of field tests are indicated by the appropriate symbol from the GLOSSARY OF SYMBOLS Standard Sheet (or as applicable for the project) and are shown at the relevant location or over the relevant depth interval.

DEPTH (RL)

Changes in rock types or the locations of piezometer tips, samples, test intervals or other depths are shown as appropriate in terms of depth from the hole collar or in terms of RL.

For inclined holes the depths shown on the log refer to the drilled length along the borehole. The RL, where used, is the only transformed reference to true vertical depth.

STRATA

Rock types are presented graphically using the symbols shown on the GLOSSARY OF SYMBOLS Standard Sheet or as assigned for the project.

DESCRIPTION

The rock type is described in accordance with the ROCK DESCRIPTION Standard Sheet.

WEATHERING

Weathering is described, by code letters, in accordance with the ROCK DESCRIPTION Standard Sheet. A weathering term or range of terms is usually assigned to various strata.

It is noted, however, that the assignment of a term of weathering is subjective and is normally used for identification and does <u>not</u> imply engineering behaviour (such behaviour being controlled principally by rock substances strength and defect frequency - collectively, rock mass strength). Consequently, boundaries are often not shown and weathering may even not be reported where potentially misleading.

ESTIMATED STRENGTH

The strength of the rock substance is estimated by a combination of Point Load testing and tactile appraisal in accordance with the ROCK DESCRIPTION Standard Sheet. The estimated strength is presented in a histogram form. Both axial and diametric point load test results can be presented using the symbols on the GLOSSARY OF SYMBOLS Standard Sheet and the variation between axial and diametric values is indicative of anisotropy or fissility of the rock unit.

NATURAL FRACTURES

The identification of <u>natural</u> fractures requires an endeavour to exclude drilling induced breaks in the core and, as such, can be somewhat subjective. Natural fractures exist prior to coring the rock, whereas artificial fractures occur either during coring, during placing core in the core boxes, or during examination or transportation, or core after being boxed.

The log of Natural Fractures is presented as a combination of Fracture Spacing, Visual and Description columns. Coding is presented on the GLOSSARY OF SYMBOLS Standard Sheet.

ROCK QUALITY DESIGNATION (RQD) INDEX OPTION

The Core Log Sheet has an optional field column to record the RQD index. For certain projects, such as tunnelling or underground mining investigations, rock mass ratings or classifications can be required as part of the design process. The Rock Quality Designation (RQD) Index forms a component of these rock mass ratings and provides a quantitative estimate of rock mass quality from rock core logs. The core must be a minimum of 54.7mm diameter (although NMLC-sized core is probably OK) for derivation of an RQD index.

The RQD index is expressed as a <u>percentage of intact rock core</u> (excludes extremely weathered rock/residual soil) <u>greater than 100 mm</u> <u>in length over the total selected core length</u>. The total selected core length should be based on identifiable engineering geological domain characteristics. Should this not be practicable, RQD can be measured on a per run basis.

Client Ku-ring-gai Council

Site Lindfield Village Hub

Date Drilled 04/11/2018

Project No. 2127850

Project Lindfield Village Hub

Location Woodford Lane, Lindfield, NSW

BOREHOLE LOG

ENVIRONMENTAL-SOIL BORE

Drill Co. Stratacore Drilling Driller T. Redman Rig Type Drill Techniques DT4 Drill Method HA / SFA / DC Total Depth (m) 20.95 Diameter (mm) 100 Easting 330354.54 Northing 6261128.69 Grid Ref GDA94_MGA_zone_56 Elevation 93.72 Logged By E.Harrison Checked By J. Curry

Depth (m)	Drilling Method	PID (ppm)	Sample ID	Water	Graphic Log	LITHOLOGICAL DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components.	Moisture	Consistency	COMMENTS/ CONTAMINANT INDICATORS Odours, staining, waste materials,separate phase liquids, imported fill, ash.	Elevation (m)
_	HA	9.9	GHD_BH2_0-0.2		\otimes	Gravelly SAND, low plasticity, coarse to fine grained,	D	L	no odour, no staining,	93.5
		9.6	GHD_BH2_0.2-0.4		V////	medium grey-brown, fine to coarse gravels (FILL).	D	L	bonded acm fragments, gravels, bitumen, organic	F 33.3
- 0.5		<u>10.1</u> 9.7	GHD_BH2_0.4-0.5 GHD_BH2_0.5-1.0			CLAY, medium plasticity, fine grained, reddish-brown, fine clays (NATURAL - RESIDUAL SOIL).			matter, minor rootlets.	È
_		5.7	GHD_BH2_0.5=1.0						no odour, no staining, fine	93
- 1		10.1	GHD_BH2_1.0-1.5						grained, reddish-brown	E
_									clays.	92.5
_ 1.5	SFA	10.9	GHD_BH2_1.5-2.0			CLAY, medium plasticity, fine grained, cream, fine	SM	L	no odour, no staining, fine	£
_		10.0				clays (NATURAL - RESIDUAL SOIL).	5101		grained, creamy clays.	92
- 2		11.0	GHD_BH2_2.0-2.5							-
_		11.0	GHD_BH2_2.0-2.5							91.5
- 2.5										E
_		12.5	GHD_BH2_2.5-3.0							- 91
3										E
_		13.2	GHD_BH2_3.0-3.5							- 90.5
- 3.5										E
_		7.3	GHD_BH2_3.5-4.0		V////					- 90
-										-
- 4		9.4	GHD_BH2_4.0-4.5			CLAY, medium plasticity, fine grained, medium	SM	F	no odour, no staining.	89.5
-						grey-brown (NATURAL - WEATHERED BEDROCK).				- 03.5
- 4.5		11.8	GHD_BH2_4.5-5.0							
_										89
- 5		11.7	GHD_BH2_5.0-5.5							È
_										88.5
_ 5.5		12.7	GHD_BH2_5.5-6.0							F
_						SHALE, medium plasticity, fine to medium grained, medium grey-brown, siltstone fragments (NATURAL -	VM	L	no odour, no staining, fine grained, dark grey shale	- 88
6		7.8	GHD_BH2_6.0-6.5			WEATHERED BEDROCK).			fragments with fine	E
_									grained dark grey clays,	- 87.5
6.5		10.0	GHD_BH2_6.5-7.0						minor siltstone.	F
F		10.0	S							87
- 7		9.8	GHD_BH2_7.0-7.5	ł						F
E		5.0	0.12_1.0-1.0							- 86.5
- 7.5		44 :		l						F
		11.4	GHD_BH2_7.5-8.0							- 86
8				l						E
Ē		14.6	GHD_BH2_8.0-8.5							- 85.5
										E
- 0.0		15.8	GHD_BH2_8.5-9.0							85
										ŧĨ
9		8.9	GHD_BH2_9.0-9.5	1						84.5
È .										- 04.5
_ 9.5 _		12.2	GHD_BH2_9.5-10.0	1						F
_										- 84
Notes	L	L	I	I			I	I	1	
Notes	,									

This log is not intended for geotechnical purposes.

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

Page 2 of 2

Depth (m)	Drilling Method	PID (ppm)	Sample ID	Water	Graphic Log	Soil Type (Cla	OLOGICAL DESCRIPTION ssification Group Symbol); Par ; Secondary / Minor Componen	ticle nts.	Moisture	Consistency	CO IN Odours material	OMMENTS/ NTAMINANT DICATORS , staining, waste s,separate phase mported fill, ash.	Elevation (m)
_		14.3	GHD_BH2_10.0-10.5										83.5
10.5		7.4	GHD_BH2_10.5-11.0										
- 11													83
						Clayey SANDS siltstone fragme	TONE, medium grained, pale grey nts, minor clay (NATURAL -	<i>y</i> ,	W			, no staining, wet, dstone with clays.	82.5
11.5 						BEDROCK).							82
- 12													- 02
_													81.5
12.5 													81
- 13													
_													80.5
- 13.5 -													80
14													
													- 79.5
- 14.5 -													- 79
15												, no staining,	Ē
 15.5	DC	0.5	GHD_BH2_15.50-15.51				ine to medium grained, pale-dark RAL - BEDROCK).	grey,	SM		finely lar	ninated silstone laminated	- 78.5
							NE, fine to coarse grained, pale-d	lark	D		shale/mu		78
16							and silt, 2 breaks / m fracture spa		J		graded,	petent sandstone	- - - - -
_ 16.5		/0.4 \	/GHD_BH2_16.36-16.37			(NATORAL - DE	DROCK).				and silts	one, with minor nated shale.	- 77.5
_											Internation	nated shale.	77
- 17													76.5
 17.5													
													- 76
- 18 -													- 75.5
- 18.5													
- 10													75
— 19 													74.5
19.5		0.5	GHD_BH2_19.56-19.57										
20													- 74
		/0.5 \	GHD_BH2_20.20-20.21										73.5
20.5 													- 73
- 21						Termination Der	oth at: 20.95 m. Terminated at targ	pet					
Ē						depth.		,					72.5
- 21.5 Notes				<u> </u>				I			I		F
This I	og is n	ot intend	ed for geotechnical purposes	3 .				1					
	-	reviation		(O ¹ :		aroto Carin -	Moisture Abbreviations		-		eviations	Cohochus O-lle	
DC-Dia (shove SD-So	amond I), HFA nic Dri	Core, FH A-Hollow	Air Rotary, BE-Bucket Excav I-Foam Hammer, HA-Hand / Flight Auger, NDD-Non Dest A-Solid Flight Auger, SS-Split	Augei ructiv	r, HE-Han e Drilling	d Excavation , PT-Pushtube,	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granula Loose, L Dense, I Dense	-Loo	se, MD	-Medium	Cohesive Soils Soft, S-Soft, F-Fin ST-Stiff, VST-Very H-Hard	m,

ENVIRONMENTAL-GROUNDWATER

Client Ku-ring-gai Council Project Lindfield Village Hub Project No. 2127850 Site Lindfield Village Hub Location Woodford Lane, Lindfield, NSW Date Drilled 05/11/2018

Drill Co. Stratacore Drilling Driller T. Redman Rig Type Drill Techniques DT4 Drill Method HA / SFA / DC Total Depth (m) 24.85 Diameter (mm) 100 Easting, Northing 330354.31, 6261252 Grid Ref GDA94_MGA_zone_56 Elevation 94.73 Collar RL 94.67 Logged By E.Harrison Checked By J. Curry

B.C.L	C.L No. N/A			Casing 50mm PVC (Class 18)			18)	Screen 0.5mm Slotted PVC (Class 18)			Surface Completion Gatic			
Depth (m)	Drilling Method	PID (ppm)	Sample ID	Water		Well Details	Graphic Log	LITHOLOGICAL DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components.	Moisture	Consistency	COMMENTS/ CONTAMINANT INDICATORS Odours, staining, waste materials,separate phase liquids, imported fill, ash.			
0.5 1 1.5 2.5 3.5 4 4.5 5.5 6 6.5 7 7.5 8 8.5 9 9.5	HA	3.2 2.3 1.2 5.7 10.9 6.0 5.7 6.0 5.0 8.9 8.7 7.4 7.7 8.8 9.0 7.6 6.6 9.2 5.8 11.2 8.6 6.2 5.7	GHD_BH1_0-0.2 GHD_BH1_0.2-0.4 GHD_BH1_0.2-0.4 GHD_BH1_0.5-1.0 GHD_BH1_0.5-1.0 GHD_BH1_1.0-1.5 GHD_BH1_2.0-2.5 GHD_BH1_2.0-2.5 GHD_BH1_2.0-2.5 GHD_BH1_3.0-3.5 GHD_BH1_3.0-3.5 GHD_BH1_4.0-4.5 GHD_BH1_5.0-5.5 GHD_BH1_5.0-5.5 GHD_BH1_6.0-6.5 GHD_BH1_6.5-7.0 GHD_BH1_7.0-7.5 GHD_BH1_8.0-8.5 GHD_BH1_8.0-8.5 GHD_BH1_8.0-9.5			Grout		Gravelly SAND, low plasticity, coarse to fine grained, dark brown and grey, fine to coarse gravels (FILL). Clayey Gravelly SAND, low plasticity, coarse to fine grained, pale brown and cream, fine to coarse gravels, fine clays (FILL). CLAY, high plasticity, fine grained, pale cream (NATURAL - RESIDUAL SOIL). CLAY, medium plasticity, fine to medium grained, dark brown, silt (NATURAL - RESIDUAL SOIL). Silty SHALE, medium plasticity, fine to medium grained, brown-grey, siltstone, sandstone (NATURAL - WEATHERED BEDROCK).	D SM M	L ST ST	no odour, no staining, bonded acm fragments, gravels, terracotta, bitumen, organic matter, minor rootlets. no odour, no staining, fill and natural soil. no odour, no staining, plastic, sticky clay. no odour, no staining, weathered shales.	94.9 94.9 93.9 92.9 92.9 92.9 91.9 90.9 90.9 90.9 90.9 90.9 88.9 88.9 88		
		8.6	GHD_BH1_9.5-10.0		ØŔ			Silty CLAY, high plasticity, fine grained, dark brown, siltstone (NATURAL - BEDROCK)	VM	ST	no odour, no staining, sticky, plastic clays weathered from shales	85		

This log is not intended for geotechnical purposes.

This log is not intended for geotechnical purposes.			
Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense,VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-GROUNDWATER

MONITORING WELL GHD_BH1

Page 2 of 3

Depth (m)	Drilling Method	PID (ppm)	Sample ID	- Water	Well Details	Graphic Loa	Ciapilic Log	LITHOLOGICAL DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components.	Moisture	Consistency	COMMENTS/ CONTAMINANT INDICATORS Odours, staining, waste materials,separate phase liquids, imported fill, ash.	Elevation (m)
_		9.8	GHD_BH1_10.0-10.5					,				- 84.5
_ 10.5 _		7.7	GHD_BH1_10.5-11.0									- 84
- - 11 -		2.0	GHD_BH1_11.0-11.5									- 83.5
11.5								CLAY, low plasticity, fine grained, medium	W		no odour, no staining, wet	
12								grey, siltstone, sandstone (NATURAL - BEDROCK).			returns - liquid, flowing clays with occasional	83 -
_ 											sandstone bands.	82.5
					Grout							82
- 13 - -												81.5
- 13.5 - -								Clayey Silty SAND, low plasticity,	W		no odour, no staining, wet	81
14								medium grained, medium grey (NATURAL - BEDROCK).			returns - sandstone.	_ 80.5
14.5								Silty CLAY, low plasticity, fine grained,	W			
15								medium - dark grey, siltstone (NATURAL - BEDROCK).	vv		no odour, no staining, wet returns - shales with interlaminated siltstone.	- 80
 15.5												_ 79.5
16					Bentor							- 79
					Bentor							78.5
— 16.5 _ _	DC											- 78
17												_ 77.5
17.5		/0.3	GHD_BH1_17.60-17.61				<u>//</u>	Silty SANDSTONE, fine to coarse	D		no odour, no staining,	- 77
18								grained, pale - dark gery, siltstone, shale, 4 breaks / m fracture spacing (NATURAL - BEDROCK).			competent, graded sandstones with interlamined layers of	
 18.5											sitIstone and occasional shale.	76.5
 19		/0.1	/GHD_BH1_18.85-18.86									- 76
					Sand							- 75.5
- 19.5 - -												75
20		64.9	/GHD_BH1_20.25-20.26									 74.5
20.5												- 74
21		/144.1	GHD_BH1_21.05-21.06									
 21.5												73.5 -
		/ 50.0	GHD_BH1_21.80-21.81									73
Notes	SWL	. at 8.998	mbTOC (14/11/2018)									
This I	og is I	not inten	ded for geotechnical purpo	ses								

 Drilling Abbreviations
 Moisture Abbreviations
 Consistency Abbreviations

 AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler
 D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated
 Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense
 Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-GROUNDWATER

Page 3 of 3

			I	-								
Depth (m)	Drilling Method	PID (ppm)	Sample ID	- Water	Well Details	Graphic Log	LITHOLOGICAL DESCRIPTION Soil Type (Classification Group Sym Particle Size; Colour; Secondary / N Components.	nbol);	Moisture	Consistency	COMMENTS/ CONTAMINANT INDICATORS Odours, staining, waste materials,separate phase liquids, imported fill, ash.	Elevation (m)
												- 72.5
22.5		60.3	GHD_BH1_22.50-22.51	$\left\{ \right\}$								
_		/32.0	GHD_BH1_22.80-22.81	11								- 72
- 23												_ 71.5
23.5		8.9	GHD_BH1_23.50-23.51		Sand			,	_		no odovu no otoining	
- 24							SILTSTONE, fine to medium grained, pale grey, 6 breaks / m fracture spacing	, ing	D		no odour, no staining, calcareous, graded	- 71 -
- 24							(NATURAL - BEDROCK).				siltstone and sandstone. competent rock	70.5
24.5												
25				₽			Termination Depth at: 24.85 m.					_ 70 _
							Terminated at target depth.					69.5
- 25.5												- 69
26												- 09
_												68.5
- 26.5												68
27												
_												67.5
- 27.5												67
28												_
_												66.5
28.5 												66
29												
												65.5
29.5 												65
30												
- 30.5												- 64.5 -
- 30.3												64
- 31												
- 31.5												63.5
-												63
- 32												
_ 32.5												62.5
												62
- 33												 61.5
 33.5												
												- 61
Notes	SWL	at 8.998	mbTOC (14/11/2018)									
			ded for geotechnical purpo	ses						A -	1.41	
Drillin	g Abl	breviatio	ns				Moisture Abbreviations C	consister	ncy	Abbrev	viations	

 Drilling Abbreviations
 Moisture Abbreviations
 Consistency Abbreviations

 AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler
 D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated
 Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense
 Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-GROUNDWATER

MONITORING WELL GHD_BH1A

Page 1 of 2

Client Ku-ring-gai Council Project Lindfield Village Hub Project No. 2127850 Site Lindfield Village Hub Location Woodford Lane, Lindfield, NSW Date Drilled 06/11/2018 Drill Co. Stratacore Drilling Driller T. Redman Rig Type Drill Techniques DT4 Drill Method HA / SFA Total Depth (m) 13 Diameter (mm) 100 Easting, Northing 330353.24, 6261252.39 Grid Ref GDA94_MGA_zone_56 Elevation 94.71 Collar RL 94.67 Logged By E.Harrison Checked By J. Curry

Depth (m)	Drilling Method	PID (ppm)	Sample ID	water		Well Details	Graphic Log	LITHOLOGICAL DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components.	Moisture	Consistency	COMMENTS/ CONTAMINANT INDICATORS Odours, staining, waste materials,separate phase liquids, imported fill, ash.	Elevation (m)
-	НА	8.8	GHD_BH1A_0-0.2	 -		1		Gravelly SAND, low plasticity, coarse to	D	L	no odour, no staining,	_
- 0.5 - 1		11.7 7.9 9.0	GHD_BH1A_0.2-0.4 GHD_BH1A_0.4-0.5 GHD_BH1A_0.5-1.0					fine grained, dark brown and grey, fine to coarse gravels (FILL). Clayey Gravelly SAND, low plasticity, coarse to fine grained, pale brown and cream, fine to coarse gravels, fine clays	SM M	L ST	bonded acm fragments, gravels, terracotta, bitumen, organic matter, minor rootlets. no odour, no staining, fill	94.
		12.3	GHD_BH1A_1.0-1.5	Ľ	16			(FILL).			and natural soil.	- 93
- 1.5 - 2	SFA	10.2	GHD_BH1A_2.0-2.5					CLAY, high plasticity, fine grained, pale cream (NATURAL - RESIDUAL SOIL). Clayey SHALE, medium plasticity, fine to medium grained, dark brown, silty	SM	ST	no odour, no staining, plastic, sticky clay. no odour, no staining, weathered shales.	/-
		10.2	GHD_BHTA_2.0-2.5	K	1 (inclusions (NATURAL - RESIDUAL SOIL).				- 92
- 2.5 - 3		12.4	GHD_BH1A_2.5-3.0			Grout						92
		9.2	GHD_BH1A_3.0-3.5									91
- 3.5 - 4		8.8	GHD_BH1A_3.5-4.0									91
		14.8	GHD_BH1A_4.0-4.5	K	18							- 90
- 4.5 - 5		17.1	GHD_BH1A_4.5-5.0									90
		16.9	GHD_BH1A_5.0-5.5									89
- 5.5		12.4	GHD_BH1A_5.5-6.0			Bentonite		Silty SHALE, medium plasticity, fine grained, pale-medium brown, silt (NATURAL - RESIDUAL SOIL).	SM	F	no odour, no staining, weathered shales. minor oxidation on fragment	
- 6		12.5	GHD_BH1A_6.0-6.5								surfaces.	88
- 6.5		19.2	GHD_BH1A_6.5-7.0									88
- 7		17.9	GHD_BH1A_7.0-7.5									87
- 7.5		17.2	GHD_BH1A_7.5-8.0									87
- 8		16.7	GHD_BH1A_8.0-8.5			Sand		Silty CLAY, medium plasticity, fine grained, dark-medium brown, siltstone	SM	F	no odour, no staining, weathered shales with	
- 8.5		22.3	GHD_BH1A_8.5-9.0			•		(NATURAL - RESIDUAL SOIL).			occasional interlaminated siltstone bands.	86
- 9		21.9	GHD_BH1A_9.0-9.5									85
- 9.5		13.7	GHD_BH1A_9.5-10.0			:						85

This log is not intended for geotechnical purposes.

This log is not interfided for geotecrifical purposes.			
Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	M-Moist, VM-Very Moist,		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-GROUNDWATER

MONITORING WELL GHD_BH1A

Page 2 of 2

		<u> </u>	1	-						r —	I		
Depth (m)	Drilling Method	PID (ppm)	Sample ID	Water		Well Details	Graphic Log	LITHOLOGICAL DESCRIPTION Soil Type (Classification Group Sym Particle Size; Colour; Secondary / M Components.	ibol);	Consistency	CC II Odour materia	OMMENTS/ DNTAMINANT NDICATORS s, staining, waste Is,separate phase imported fill, ash.	Elevation (m)
		9.7	GHD_BH1A_10.0-10.5										- 84.5
- 10.5		10.7	GHD_BH1A_10.5-11.0	$\left\{ \right\}$									
- 11													- 84
_													- 83.5
- 11.5 -						-Sand							- 83
- 12													
 12.5													- 82.5
_													82
- 13 -				ľ	<u>··</u> E··			Termination Depth at: 13.00 m. Terminated at target depth.					- 81.5
- 13.5								ninatoa at targot aoptin.					
- 14													- 81
													- 80.5
- 14.5													80
- 15													- 70 5
 15.5													— 79.5 — —
_													- 79
16													- 78.5
													- 70
- 17													78
_													- 77.5
17.5													- 77
- 18													
- 18.5													_ 76.5
													- 76
— 19 _													- 75.5
- 19.5													Ĕ
20													75
_													- 74.5
20.5													- 74
21													
- 21.5													73.5
													- 73
Notes	SWL	at 6.120) mbTOC (14/11/2018)							•	-		
		not inten breviatio	ded for geotechnical purpo	oses				Moisture Abbreviations Co	onsistency	Abbre	viations		
AH-A	Air Har	mmer, AF	R-Air Rotary, BE-Bucket Ex					D-Dry, SM-Slightly Moist, Gr	ranular Soi	Is VL-'	Very	Cohesive Soils V	
(shove SD-So	el), HF onic Di	A-Hollow	FH-Foam Hammer, HA-Hai / Flight Auger, NDD-Non D FA-Solid Flight Auger, SS-S r	estr	uctive Dr	rilling, PT-P	ushtube,	W-Wet, S-Saturated De	oose, L-Loos ense, D-Der ense			Soft, S-Soft, F-Firm ST-Stiff, VST-Very : H-Hard	

Appendix C – Equipment calibration sheets

PID Calibration Certificate

Instrument PhoCheck Tiger Serial No. T-106575

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass			Comments	5
Battery	Charge Condition	1				
	Fuses	1				
	Capacity	1				
	Recharge OK?	1				
Switch/keypad	Operation	1				
Display	Intensity	1				
	Operation (segments)	1				
Grill Filter	Condition	1				
	Seal	1				
Pump	Operation	1				
	Filter	1				
	Flow	1				
	Valves, Diaphragm	1				
PCB	Condition	1				
Connectors	Condition	✓				
Sensor	PID	✓	10.6 ev			
Alarms	Beeper	✓	Low	High	TWA	STEL
	Settings	✓	50ppm	100ppm	N/A	N/A
Software	Version	1				
Data logger	Operation	✓				
Download	Operation	1				
Other tests:						

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor S	Serial no	Calibration gas and concentration	Certified	Gas bottle No	Instrument Reading
PID Lamp 98ppm Isobutylene			NATA	SY137	96.7ppm
Calibrated by: Sratha			Sarah Lian		
Calibration date: 3/12/		3/12/2018			
Next calibration due:		1/06/2019			

PID Type:	thereot	etter	PID Field Calibration Sheet	Sheet		GHD
PID Serial Number:						
PID Supplier:	Ainnets	Scientia C.				
	S:\Services\Contami	nated Land/Field/Field	S:\Services\Contaminated Land\Field\Field Book Sheets\[PID Field Sheet.xls]Sheet1			
Calibration or Check	Date	Time	Task	Air (ppm)	lsobutylene Gas (ppm)	Correction Factor
	A)12	7.05°m	84 6 Douglas Paintners weil test	140.0		
	5112	9.05cm	Bump TPET 100ppm 150 Birtgland	26000 2	mdg.101	
	C12.	123500	Rump Test iman isu Butilare	0,053.	96.75DM	
1 T						

Job Name:	-mal	fed thub	Date: 3112					
GHD Repres	entative:	Ettarrison	Time: Far	Fam Departure Time:				
Weather Conditions: (Please circle) Fine Overcast Light Rain Heavy Rain Other								
Works Being								
Undertaken:								
Personnel/Co	ontractor	(s) Present (List all); Inducted into GHD	H&SP?	Inducted	Arrival Time	Departure Time		
				0				
Photographs	Taken:	(Please circle) Yes No If Yes,	list below o	r attach photo	register.			
Location	Time	Record of Activities / Issues Encount	ered / Discu	ssions with Clie	ent/Contractors	/ Sketch / Notes		
		upper ravporic na	rov s	bstahi	an			
			7					
14		BH5 (Asset Geote	och)					
1		8.200m	-					
1		SWL = 5.18	3mB	G L	1. j			
		Base of wel = 12.92mBGL						
		PID on opening = 0.11						
		<u> </u>						
		1. Olivos bailed SNL 6.73 mBGL C8.55 GW						
6		PID = 0.001 @ 8.50am						
		11040am SNL =	6.25r	nBGL				
				· · · · ·	<u> </u>			
		12.25 SWL	- 5.1	87m BG	L_			
					•			
ls a Notice of	Propose	d Variation, Variation Order or Site Inst	ruction Req	uired? (Ple	ase circle) Yes	No		
Provide Deta	ils:							
Further Inspe	ection							
and/or Testin								
and/or Testing Required on above								
	Work:							

Client:	Ku-1	ring-gai Caincil	Job No	21	27850	명한 네 문화한			
Job Name:	Linc	Reld	Date:	3/12					
GHD Representative: E. Horrison Arrival Time: 7.00am Departure Time:									
Weather Conditions: (Please circle) Fine Overcast Light Rain Heavy Rain Other									
Works Beir									
Undertaker	1:			1	T				
Personnel/	Contractor(s) Present (List all); Inducted into GF	ID H&SP?	Inducted	Arrival Time	Departure Time			
Photograph	ns Taken:	(Please circle) Yes No If Ye	s, list below o	or attach photo	o register.				
Location	Time	Record of Activities / Issues Encour				Sketch / Notes			
		Lower Corporks							
		-Dipped B+t6 (Dougle	s forty	vers)				
		SWL = 4.27mE	SGL	-	-				
		Base of Well = 8:29 m BGL							
		PID on opening = 0.044							
		Bailed 10 volumes at 8.100m							
		SWL = 5.90 m BGL							
		- opaque, ligi			ly water				
	**************************************	- no odair	0.0		J				
	1); 100000000000000000000000000000000000								

						1010-101-101-101-101-101-101-101-101-10			
s a Notice o	of Proposed	d Variation, Variation Order or Site In	struction Rec	uired? (PI	ease circle) Yes	No			
Provide Det	ails:								
Further Insp	ection								
and/or Testi Required or	-								
Work:	. 48076								

1300 137 067

ltem	Test	Pass	Comments
Battery	Compartment	✓	
	Capacity	✓	
Probe	Cleaned/Decon.	1	
	Operation	✓	
Connectors	Condition	✓	
Tape Check	Cleaned		
Connectors	Checked for cuts		
Instrument Test	At surface level	✓	
·			

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Alinta Calibrated by: Alinta Furnell

Calibration date:

4

12/12/2018

Next calibration due:

10/02/2019

Instrument **YSI Quatro Pro Plus** Serial No. 18J104331

1300 137 067

ltem	Test	Pass	Comments
Battery	Charge Condition	 ✓ 	
	Fuses	1	
	Capacity	✓	
Switch/keypad	Operation	✓	
Display	Intensity	1	
	Operation (segments)	4	
Grill Filter	Condition	1	· · · · · · · · · · · · · · · · · · ·
	Seal	1	
PCB	Condition	1	······································
Connectors	Condition	1	· · · · · · · · · · · · · · · · · · ·
Sensor	1. pH	1	
	2. mV	 ✓ 	
	3. EC	1	· · · · · · · · · · · · · · · · · · ·
	4. D.O	1	· · · · · · · · · · · · · · · · · · ·
	5. Temp		
Alarms	Beeper		
	Settings		
Software	Version		·····
Data logger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

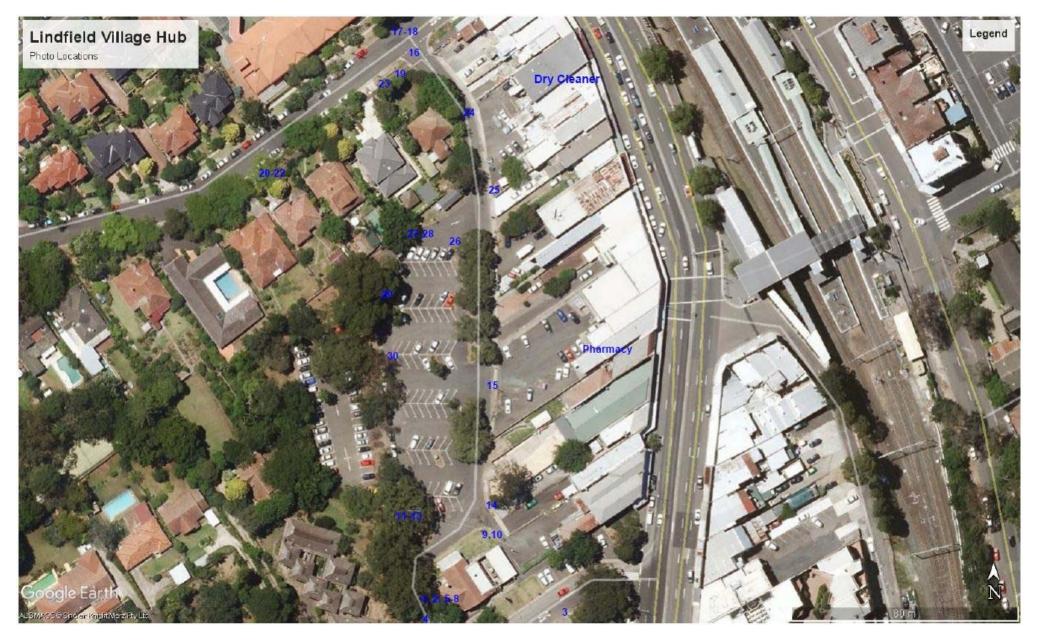
This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
1. pH 10.00		pH 10.00		318140	pH 9.89
2. pH 7.00		pH 7.00		317272	pH 7.03
3. pH 4.00		pH 4.00	1	320612	
4. mV		231.8mV		325420/324357	231.9mV
5. EC		2.76mS		320326	2.74mS
6. D.O		0.00ppm		10175	0.00ppm
7. Temp		20.7°C		MultiTherm	21°C

Calibrated by:

Calibration date:

13/12/2018


Next calibration due: 12/01/2019 $\label{eq:product} \textbf{Appendix} \ \textbf{D} - Field \ records \ and \ photos$

Lindfield Village - preliminary site visit photo index

	Direction looking	Description
Photo		
Lindfield-1	down	Well at base of Sydney Council Electric Substation buildings
Lindfield-2	north	West side of Sydney Council Electric Substation buildings, south entrance to car park
Lindfield-3	north	Sydney Council Electric Substation buildings from Beaconsfield Pde
Lindfield-4	north	West side of Sydney Council Electric Substation buildings, south entrance to car park rom Beaconsfield Pde
Lindfield-5	down	Well at base of Sydney Council Electric Substation buildings
Lindfield-6	down	Well at base of Sydney Council Electric Substation buildings
Lindfield-7	down	Well at base of Sydney Council Electric Substation buildings – well filled with dirt
Lindfield-8	down	Well at base of Sydney Council Electric Substation buildings
Lindfield-9	west	From north east side of substation, back to carpark – proposed area for drillhole
Lindfield-10	west	From north east side of substation, back to carpark – proposed area for drillhole
Lindfield-11	south	Towards substation buildings and entrance to carpark from Beaconsfield Pde
Lindfield-12	south	Towards substation buildings and entrance to carpark from Beaconsfield Pde
Lindfield-13	north-east	From Beaconsfield Pde entrance back across proposed location for drillhole. Could not located previously drilled
		well
Lindfield-14	south-west	Towards substation buildings –showing overhead powerline
Lindfield-15	east	Towards Lindfield pharmacy from Woodford Lane
Lindfield-16	east	Along Woodford Lane from Bent St entrance, looking back to dry cleaners and pool equipment businesses
Lindfield-17	south-east	From Bent St, looking into Woodford Land, showing dry cleaner location wrt demolished house where previously
		drilled borehole was located. This borehole was not discovered due to dense overgrowth.
Lindfield-18	south-west	Along Bent St from corner with Woodford Lane. Showing vacant block, 2 houses, then more vacant land as you
		head west.
Lindfield-19	south	2 Bent St – now vacant land. Securely fenced, overgrown. Could not located borehole from street view.
Lindfield-20	south-west	Vacant blocks 8-12 Bent St
Lindfield-21	south-west	Vacant blocks 8-12 Bent St
Lindfield-22	south-west	Vacant blocks 8-12 Bent St
Lindfield-23	east	View from 2 Bent St toward dry cleaners
Lindfield-24	east	Woodford Lane – businesses directly east of 2 Bent St
Lindfield-25	west	Woodford Lane – from 2 rear of 2 Bent St
Lindfield-26	north-east	Rear of 2 Bent St, dry cleaners, from car park
Lindfield-27	east	Rear of 2-4 Bent St from car park, towards dry cleaners
Lindfield-28	east	Rear of 2-4 Bent St from car park, towards dry cleaners
Lindfield-29	west	View of entrance into lower car park from upper car park. All day parking
Lindfield-30	south	View towards Beaconsfield Pde entrance

Lindfield Village Hub Preliminary Site Visit: 26 October 2018

Site Photo Locations

Photo ID	Borehole	Depth (metres)	Notes
Lindfield_BH1-9937	GHD_BH1	0.2	Fill material with suspected ACM
 Lindfield_BH1-9938	 GHD_BH1	0.4	
Lindfield_BH1-9939	GHD_BH1	0.5	Duplicate and triplicate included
Lindfield_BH1-9940	GHD_BH1	1.0	
Lindfield_BH1-9941	GHD_BH1	1.5	
Lindfield_BH1-9942	GHD_BH1	2.0	
Lindfield_BH1-9943	GHD_BH1	2.5	
Lindfield_BH1-9944	GHD_BH1	3.0	
Lindfield_BH1-9945	GHD_BH1	3.0	
Lindfield_BH1-9946	GHD_BH1	3.5	
Lindfield_BH1-9947	GHD_BH1	4.0	
Lindfield_BH1-9949	GHD_BH1	4.5	
Lindfield_BH1-9950	GHD_BH1	5.0	
Lindfield_BH1-9953	GHD_BH1	5.5	
Lindfield_BH1-9954	GHD_BH1	6.0	
Lindfield_BH1-9955	GHD_BH1	6.5	
Lindfield_BH1-9956	GHD_BH1	7.0	
Lindfield_BH1-9957	GHD_BH1	7.5	
Lindfield_BH1-9958	GHD_BH1	8.0	
Lindfield_BH1-9959	GHD_BH1	8.5	
Lindfield_BH1-9960	GHD_BH1	9.0	
Lindfield_BH1-9969	GHD_BH1	9.5	
Lindfield_BH1-9970	GHD_BH1	10.0	
Lindfield_BH1-9971	GHD_BH1	10.5	
Lindfield_BH1-9972	GHD_BH1	11.0	
Lindfield _BH1-9982	GHD_BH1	16.5 - 21.0	Core
Lindfield_BH1-9997	GHD_BH1	21.0 - 24.85	Core
Lindfield_BH1-9999	GHD_BH1	23.6	Core
Lindfield_BH1-10001	GHD_BH1	24.2	Core
Lindfield_BH1-10002	GHD_BH1	17.0	Core
Lindfield_BH1A-0003	GHD_BH1A	0.2	Fill material with suspected ACM
Lindfield_BH1A-0004	GHD_BH1A	0.4	
Lindfield_BH1A-0005	GHD_BH1A	0.5	
Lindfield_BH1A-0006	GHD_BH1A	1.0	
Lindfield_BH1A-0008	GHD_BH1A	1.5	
Lindfield_BH1A-0009	GHD_BH1A	2.0	
Lindfield_BH1A-0011	GHD_BH1A	2.5	
Lindfield_BH1A-0012	GHD_BH1A	3.0	
Lindfield_BH1A-0013	GHD_BH1A	3.5	
Lindfield_BH1A-0014	GHD_BH1A	4.0	
Lindfield_BH1A-0015	GHD_BH1A	4.5	
Lindfield_BH1A-0016	GHD_BH1A	5.0	
Lindfield_BH1A-0017	GHD_BH1A	5.5	
Lindfield_BH1A-0018	GHD_BH1A	6.0	
Lindfield_BH1A-0019	GHD_BH1A	6.5	
Lindfield_BH1A-0020	GHD_BH1A	7.0	
Lindfield_BH1A-0021	GHD_BH1A	7.5	
Lindfield_BH1A-0022	GHD_BH1A	8.0	
Lindfield_BH1A-0024	GHD_BH1A	8.5	
Lindfield_BH1A-0026	GHD_BH1A	9.0	

Photo ID	Borehole	Depth (metres)	Notes
Lindfield_BH1A-0030	GHD_BH1A	10.5	
Lindfield_BH1A-0031	GHD_BH1A	11.0	
Lindfield_BH1A-0035	GHD_BH1A		BH1A well
Lindfield_BH2-9870	GHD_BH2		Suspected ACM
Lindfield_BH2-9871	GHD_BH2	0.1	Fill material with suspected ACM
Lindfield_BH2-9872	GHD_BH2	0.4	
Lindfield_BH2-9873	GHD_BH2	0.4	
Lindfield_BH2-9875	GHD_BH2	0.5	
Lindfield_BH2-9876	GHD_BH2	1.0	
Lindfield_BH2-9878	GHD_BH2	1.5	
Lindfield_BH2-9879	GHD_BH2	2.0	
Lindfield_BH2-9880	GHD_BH2	2.5	
Lindfield_BH2-9881	GHD_BH2	3.0	
Lindfield_BH2-9882	GHD_BH2		2.0m, 2.5m, 3.0m piles
Lindfield BH2-9885	GHD BH2		Suspected ACM from 0.1m
Lindfield BH2-9886	GHD BH2		Suspected ACM from 0.1m
Lindfield_BH2-9889	GHD_BH2	3.5	
Lindfield_BH2-9891	GHD_BH2	4.0	
Lindfield BH2-9892	 GHD_BH2	4.5	
Lindfield BH2-9893	GHD BH2	5.0	
Lindfield BH2-9894	GHD BH2	5.5	
Lindfield BH2-9895	GHD BH2	6.0	
 Lindfield BH2-9896	GHD BH2	6.5	
Lindfield BH2-9897	GHD BH2	7.0	
Lindfield BH2-9898	GHD_BH2	7.5	
Lindfield BH2-9900	GHD BH2	8.0	
Lindfield BH2-9902	GHD BH2	8.5	
Lindfield BH2-9903	GHD BH2	9.0	
Lindfield BH2-9904	GHD BH2	9.5	
Lindfield_BH2-9906	GHD_BH2	10.0	
Lindfield_BH2-9911	GHD_BH2		Drilling GHD_BH6
Lindfield BH2-9913	GHD BH2		Drilling GHD_BH7
Lindfield_BH2-9918	GHD_BH2	10.5	Wet returns
Lindfield BH2-9919	GHD_BH2	12.0	Wet returns
Lindfield_BH2-9927	GHD_BH2	15.2 - 20.95	Core
Lindfield BH2-9928	GHD BH2	15.2 - 20.95	Core
Lindfield_BH2-9929	GHD_BH2	15.2 - 20.95	Core
Lindfield BH2-9931	GHD BH2	15.2 - 20.95	Core
Lindfield_BH2-9933	GHD_BH2	20.3	Core
Lindfield BH2-9935	GHD BH2	20.5	Core
Lindfield_BH2-9936	GHD_BH2	20.5	Core
IMG_9698	BH5	20.0	
IMG_9699	BH6		
IMG_9700			Proposed sites for GHD_BH2
IMG_9701			Proposed sites for GHD_BH2
IMG_9702			Proposed sites for GHD_BH2
IMG_9702			Proposed sites for GHD_BH2
IMG_9708			Proposed site for GHD_BH3
IMG_9708			Proposed site for GHD_BH3
	вне		
IMG_9710	BH6		Dramaged site for CUD, DUD
IMG_9712			Proposed site for GHD_BH3

Photo ID	Borehole	Depth (metres)	Notes
IMG_9718			Proposed site for GHD_BH1
IMG_9719			Proposed site for GHD_BH1
IMG_9725			Drilling GHD_BH2
IMG_9733			2 Bent Street prior to drilling
IMG_9738	GHD_BH2		
IMG_9739	GHD_BH2		
IMG_9745	GHD_BH2		
IMG_9746	GHD_BH2		
IMG_9748	GHD_BH2		
IMG_9749	GHD_BH2		
IMG_9750	GHD_BH2		
IMG_9781	BH6		Gatic cover repair
IMG_9782	BH6		Gatic cover replacement
IMG_9783	GHD_BH1, GHD_BH	1A	2 Bent St, 3 waste drums
IMG_9785	GHD_BH1, GHD_BH	1A	2 Bent St, 2 waste drums
IMG_9786	GHD_BH1, GHD_BH	1A	
IMG_9788	GHD_BH1		
IMG_9789	GHD_BH1A		
IMG_9790			2 Bent St, 1 waste drum
IMG_9791			2 Bent St, 2 waste drums
IMG_9792			2 Bent St, after drilling completion

Lindfield-1

Lindfield-4

Lindfield-7

Lindfield-3

Lindfield-9

Lindfield-10

Lindfield-13

Lindfield-16

Lindfield-11

Lindfield-14

Lindfield-12

Lindfield-18

Lindfield-19

Lindfield-22

Lindfield-25

Lindfield-20

Lindfield-23

Lindfield-21

Lindfield-24

Lindfield-27

IMG_9708

IMG_9709

IMG_9710

IMG_9712

Lindfield_BH2-9870

IMG_9718

IMG_9719

Lindfield_BH2-9871

Lindfield_BH2-9872

Lindfield_BH2-9873

Lindfield_BH2-9878

Lindfield_BH2-9881

Lindfield_BH2-9879

Lindfield_BH2-9882

Lindfield_BH2-9876

Lindfield_BH2-9880

Lindfield_BH2-9885

Lindfield_BH2-9886

Lindfield_BH2-9892

Lindfield_BH2-9895

Lindfield_BH2-9896

Lindfield_BH2-9891

Lindfield_BH2-9894

IMG_9725

Lindfield_BH2-9897

Lindfield_BH2-9902

Lindfield_BH2-9911

Lindfield_BH2-9900

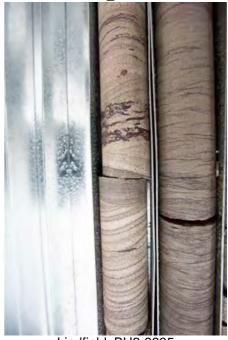
Lindfield_BH2-9904

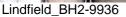
Lindfield_BH2-9913

Lindfield_BH2-9918

Lindfield_BH2-9931

Lindfield_BH2-9919


Lindfield_BH2-9933

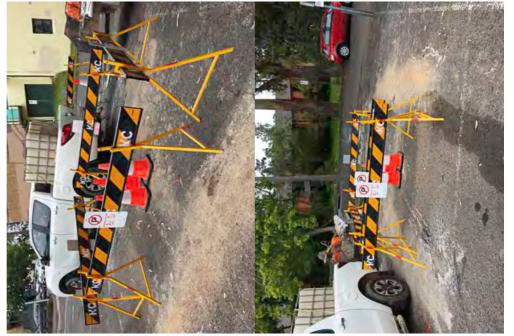


Lindfield_BH2-9929

Lindfield_BH2-9935

IMG_9738

Lindfield_BH1-9937


Lindfield_BH1-9940

Lindfield_BH1-9938

Lindfield_BH1-9941

IMG_9739

Lindfield_BH1-9939

Lindfield_BH1-9942

Lindfield_BH1-9943

Lindfield_BH1-9946

Lindfield_BH1-9950

Lindfield_BH1-9944

Lindfield_BH1-9947

Lindfield_BH1-9953

Lindfield_BH1-9945

Lindfield_BH1-9949

Lindfield_BH1-9954

Lindfield_BH1-9955

Lindfield_BH1-9958

Lindfield_BH1-9969

Lindfield_BH1-9956

Lindfield_BH1-9970

Lindfield_BH1-9957

Lindfield_BH1-9960

Lindfield_BH1-9971

IMG_9748

Lindfield_BH1-9982

IMG_9750

Lindfield_BH1-9997

Lindfield_BH1-9999

Lindfield_BH1-10001

Lindfield_BH1-10002

IMG_9782

Lindfield_BH1A-0005

Lindfield_BH1A-0003

Lindfield_BH1A-0006

IMG_9781

Lindfield_BH1A-0004

Lindfield_BH1A-0008

Lindfield_BH1A-0009

Lindfield_BH1A-0013

Lindfield_BH1A-0011

Lindfield_BH1A-0014

Lindfield_BH1A-0017

Lindfield_BH1A-0012

Lindfield_BH1A-0015

Lindfield_BH1A-0018

Lindfield_BH1A-0019

Lindfield_BH1A-0022

Lindfield_BH1A-0030

Lindfield_BH1A-0020

Lindfield_BH1A-0031

Lindfield_BH1A-0021

Lindfield_BH1A-0026

Lindfield_BH1A-0035

IMG_9788

IMG_9789

IMG_9791

IMG_9792

IMG_9790

17/12/2018

Terry Nham GHD Level 15, 133 Castlereagh Street Sydney NSW

RE: Monitoring Well survey at Woodford Lane carpark, Lindfield

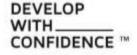
Terry,

Please find below a table of the monitoring wells that have been surveyed on December 14, 2018. The preferred method used, as discussed with you, to acquire this information is through GPS (RTK) and Total Station (by resection from GPS established survey controls), and is based on the Map Grid of Australia (MGA) and the Australian Height Datum (AHD).

Monitoring Well ID	Eastings	Northings	Top of Pipe RL	Natural Surface RL
BH01	330354.31	6261252.00	94.67	94.73
BHO1A	330353.24	6261252.39	94.67	94.71
BH02	330354.54	6261128.69	-	93.72
BH05	330356.27	6261120.12	93.69	93.77
BH06	330306.73	6261179.76	89.65	89.73

If you require further information please do not hesitate to contact us.

Sincerely,


Callum Ellis Subsurface Utility Surveyor

0447 778 913 c.ellis@veris.com.au

Sydney

Suite 1, Level 5 8 Australia Avenue Sydney Olympic Park NSW 2127 PO Box 6606 Silverwater NSW 2128 T 1300 765 315 info.nsw@veris.com.au veris.com.au Office Locations Over 20 offices across Australia veris.com.au/contactus

Veris Australia Pty Ltd ABN 53 615 735 727

(1:1)	ANAGEMENT NGINEERING NVIROMMENT	Purgi	ing and S	Sampling	Record	1		P	Bore ID: GND_BH1	
Job Information Client: Ku-ring-gai Council Project: Lindfield Village Hub Proj. No.: 21-27850 Sampler: T. Nham Date:							23.0 m Fce / Gge	Bore Information SWL: 8.198 Screen: From: m Logic Check: m Screen: From: m Stick Up: m NAPL Check: Bore Diam.: Ref.datum: Well Cap Secure? Bore Depth: 23.36		
Time ()	Volume (L)	SWL mbtoc	Dis.Oxygen ()	Elec.Cond ()	pH (pH units)	ox-Red Pt. (± mV)	Sable filter/s Temp (°C)	yringe) 	Comment: Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry?	
Stable With read 11:74 11:30 11:34 11:34 11:38 11:44	279	stable 9.21 9.35 9.46 9.46 9.40	+/- 10% 0.35 0.34 0.71 0.46 0.37	+/- 3% 3047 2118 3137 3144 3118	+/- 0.05 pH 6.27 6.00 6.00 5.95 5.95	+/- 10 mV -48.1 -17.8 -18.4 -18.7 -20.8	20.0 19.9 19.8 19.8 19.9		Dan pry, tednert. 1, h 11	
11:45	6	9.48	0.27	3(07	5.96	-17.4	19.8			
Decontamir Was sampli	in vials? Y / ation as per ng equipme	GHD prod	olent reactions cedure? Y / N	? Y / N	Paran Preserv		IPH PAH	СНС РСВ	OCP OPP Tot. Metal Biol.	
COC update		nples collec	cted, bottles used	, access, conditi bothe	ion of headwork	bal A	and a	2	Dall Cor had to Lappe latting. Dall Cor had to Lappe latting. Purge Volumes Casing Int. Dia (mm) 50 100 150 Vol (L/m of casing) 2.0 7.9 17.7 *Double for gravel pack	

((-))	MANAGEMENT NGINEERING NVIRONMENT	Purgi	ng and S	Sampling	g Record	ł					GHD Bore ID: - BH1A	
-3	Job Information Sampling Information									Bore Int	formation	
Client:	Ku-ring-ga	ai Council		Purge Metho	od: Lel			SWL		m	^{formation} Logic Check: Stick Up: m	
Project:	Lindfield	/illage Hu	b	Sample Met	hod:			Screen	: From:	to m	Stick Up: m	
Proj. No.:	21-27850			WQ Meter Ty			10 17	NAPL Chec	k:		Bore Diam.: / 50 mm	
Sampler:	T. Nham	112		Flow Cell:	Y / N	Pump Depth:	12.0 m	Ref.datum	:		Well Cap Secure?	
Date:	T. Nham (4/11	-118		WLevel Mete	er Type:	Dip / Fox / Int.F	ce / Gge	Bore Depth	12.7	<u>с</u> т		
Round	December	2018	6	Field Filtere	d?Y/N (filte	er vessel, dispos	sable filter/s					
Time	Volume	SWL	Dis.Oxygen	Elec.Cond	рН	Ox-Red Pt.	Temp		Comment:			
()	(L)	mbtoc	()	()	(pH units)	(± mV)	(°C)	()	Colour, turk	oidity, sediment load	l, sheen, odour, flow rate, purged dry?	
Property of the second s	(3 consecutive lings):	stable	+/- 10%	+/- 3%	+/- 0.05 pH	+/- 10 mV	-			and the second of the		
10:0	1	6.49	0.38	2926	6.02	-41.7	20.1		Brown	cludy-		
10:21	2	6.88	0.26	2925	6.64	-60.)	20.)		1	dudz-		
10:24	2	7.01	0.23	2928	6.04	-65.3	20.1		h			
10128	4	7.21	0.20	2531	6.05	-74.2	20.)		1)			
10:32	5	7.42	070	2931	6.05	-75.0	20.1		l)			
10136	6	7.38	0.21	2935	6.06	-84.6	20.1		4			
					0.00		20.1			=======================================		
<i>P</i>												
								-				
										7		
	F	ield QA Cl	necks:		Г <u> </u>		1				······································	
	s in vials? Y	/N Any vi	olent reactions	s? Y / N	Parar	neters BTEX 1	РН РАН	СНС РСВ	OCP OPF	P Tot. Metal Biol.		
	nation as pe ling equipme		cedure? Y / N		Preserv	atives						
COC updat		int pre-clea	aneur i / N		L							
Comment	: Duplicate sa	mples colled	cted, bottles used	d, access, condit	tion of headwor	ks etc 6 botflo	r, me	Alls Fil	lerd		<i>Purge Volumes</i> Casing Int. Dia (mm) 50 100 150 Vol (L/m of casing) 2.0 7.9 17.7 *Double for gravel pack	

1

(C)) EN	ANAGEMENT NGINEERING NVIRONMENT	Purgi	ng and S	Sampling	g Record	ł			Boi	re ID: PANO BHS
Project: Lindfield Village HubSample MetProj. No.: 21-27850WQ Meter TSampler: T. NhamFlow CellDate:				Sampling Information ethod: Peril Method: Peril r Type: YSI			Bore Information SWL: 5.350 m Logic Check: m Screen: From: m Stick Up: m NAPL Check: Bore Diam.: 50 mm Ref.datum: Well Cap Secure? m Bore Depth: 12.83 m			
Time	Volume	SWL	Dis.Oxygen	Elec.Cond	рН	Ox-Red Pt.	Temp		Comment:	
() Stable when ((L) (3 consecutive	mbtoc	()	()	(pH units)	(± mV)	(°C)	()	Colour, turbidity, sediment load, sheen,	odour, flow rate, purged dry?
readi	ings):	stable	+/- 10%	+/- 3%	+/- 0.05 pH	+/- 10 mV	-			11 1
7:41		5.56	0.55	486.7	5.50	91.8	20.7		Dram/Sray cloudy - pails	ble stean
7:45	2	5.61	0.73	482.6	5.49	94.6	20.7		<i>y</i> /	
7:48	3	5.61	0.50	482.2	5.48	97.3	20.8		h	
7:51	4	5.61	0.46	487.9	5.49	95.4	20.7		(b)	
7:54	5	5.61	0.46	488.7	5.50	94.6	20.7		1)	
7:58	6	5,61	0.37	490.2	5.51	92.6	20.7.		4	
8:02	L.	5.6	0.28	495.9	5.57	89.2	20.7		11	
8:06	8	5.61	0.29	491.5	5.52	89.3	20.7		11	
L										
Decontamir Was sampli	Field QA Checks: Air bubbles in vials? Y / N Any violent reactions? Y / N Decontamination as per GHD procedure? Y / N Parameters BTEX TPH PAH Preservatives COC updated? Y / N Preservatives						CHC PCB	OCP OPP Tot. Metal Biol.		
Comment:	Duplicate sa		ECOL			ks etc 6+6 box 6 fiftered.	Hei		Vol (L/m	<i>Purge Volumes</i> Int. Dia (mm) 50 100 150 n of casing) 2.0 7.9 17.7 Double for gravel pack
					Meta	6 fortand.				

MANAGEMENT ENGINEERING ENVIRONMENT Purging an	Sampling Record Bore ID: 3H6	
Job Information Client: Ku-ring-gai Council Project: Lindfield Village Hub Proj. No.: 21-27850 Sampler: T. Nham Date:	Sampling Information Bore Information Purge Method: e Sample Method: e Sample Method: e WQ Meter Type: YSI Flow Cell: Y / N Purge: Dip / Fox / Int.Fce / Gge Bore Depth: m Sereen: Screen: Bore Depth: for Diam.: Some Diam.: for Diam.: Bore Diam.: for Diam.: Some Diam.:	I
Time Volume SWL Dis.Oxy () (L) mbtoc (Stable when (3 consecutive () () (pH units) (± mV) (°C) () Colour, turbidity, sediment load, sheen, odour, flow rate, purged	dry?
Stable when (s consecutive readings): stable $+/-$ 109 9:25 1 9.41 0-37 9:27 1 9.41 0-37 9:33 3 9.60 0.15 9:37 9 4.65 0.17 9:41 5 9.65 0.16 9:44 6 4.73 0.16 9:44 6 4.73 0.16	+/.3% $+/.005pH$ $+/.10mV$ - 637 5.10 $(67.9, 1/9, 0)$ $Dom/(bbddy)$. 576 5.01 $/77.7$ 19.0 11 646 5.12 173.1 19.1 11 672 5.15 170.3 19.1 11 703 5.15 170.3 19.1 11 728 5.23 165.1 19.1 11 $ 728$ 5.23 165.1 19.1 11 $ -$	
Field QA Checks: Air bubbles in vials? Y / N Any violent reac Decontamination as per GHD procedure? Y Was sampling equipment pre-cleaned? Y / I COC updated? Y / N Comment: Duplicate samples collected, bottles	N Preservatives	

Appendix E – Summary of analytical results and QA/QC

Appendix E RPD Field Duplicates -Groundwater

Ku-ring-gai Council Lindfield Village Hub

Field Duplicates (wate Filter: ALL	a j		SDG Field ID Sampled Date/Time	BH5	14-Dec-18 QC01 14/12/2018	RPD		ALSE-Sydney 17-Dec-18 QC02 14/12/2018	RPD
Method_Type	ChemName	Units	EQL						
Heavy Metal	Arsenic (Filtered)	mg/L	0.001	<0.001	<0.001	0	<0.001	<0.001	0
	Cadmium (Filtered)	mg/L	0.0002 : 0.0001 (Interlab	<0.0002 0.001	<0.0002 <0.001	0	<0.0002 0.001	<0.0001 <0.001	0
	Chromium (III+VI) (Filtered) Copper (Filtered)	mg/L mg/L	0.001	0.001	0.001	0 40	0.001	<0.001 0.062	0 188
	Iron (Filtered)	mg/L	0.05	3.2	3.1	3	3.2	2.85	12
	Lead (Filtered)	mg/L	0.001	<0.001	<0.001	0	<0.001	0.004	120
	Manganese (Filtered)	mg/L	0.005 : 0.001 (Interlab)	3.7	3.7	0	3.7	3.4	8
	Mercury (Filtered) Nickel (Filtered)	mg/L mg/L	0.0001	<0.0001 0.023	<0.0001 0.023	0	<0.0001 0.023	<0.0001 0.028	0
	Zinc (Filtered)	mg/L	0.005	0.054	0.055	2	0.054	0.127	81
al Organic	Naphthalene (BTEXN)	µg/l	10	<10	<10	0	<10		
Volatile	Benzene	µg/l	1	<1	<1	0	<1	<1	0
	Toluene	µg/l	1:2 (Interlab)	<1	<1	0	<1	<2	0
	Ethylbenzene	µg/l	1:2 (Interlab)	<1	<1	0	<1	<2	0
	Xylene (o) Xylene (m & p)	µg/l µg/l	1 : 2 (Interlab)	<1 <2	<1 <2	0	<1 <2	<2 <2	0
	Xylene Total	µg/l	3 : 2 (Interlab)	<3	<3	0	<3	<2	0
Organic	F1 (C6-C10 minus BTEX)	µg/l	20	<20	<20	0	<20	<20	0
	C6-C10 Fraction	µg/l	20 50 : 100 (Intoriob)	<20	<20	0	<20	<20	0
	F2 (>C10-C16 minus Naphthalene) >C10-C16 Fraction	µg/l µg/l	50 : 100 (Interlab) 50 : 100 (Interlab)	<50 <50	<50 <50	0	<50 <50	<100 <100	0
	F3 (>C16-C34 Fraction)	µg/l	100 (Interiab)	<100	<100	0	<100	<100	0
	F4 (>C34-C40 Fraction)	µg/l	100	<100	<100	0	<100	<100	0
	>C10-C40 (Sum of Total) C6-C9 Fraction	µg/l	100 20	<100 <20	<100	0	<100 <20	<100 <20	0
		µg/l	20	<20	<20	0	<20	<20	0
ТРН	C10-C14 Fraction	µg/l	50	<50	<50	0	<50	<50	0
	C15-C28 Fraction	µg/l	100	<100	<100	0	<100	<100	0
	C29-C36 Fraction C10-C36 (Sum of Total)	µg/l µg/l	100 : 50 (Interlab) 100 : 50 (Interlab)	<100 <100	<100 <100	0	<100 <100	<50 <50	0
РАН	Acenaphthene Acenaphthylene	µg/l µg/l	1	<1 <1	<1 <1	0	<1 <1	<1 <1	0
	Anthracene	µg/l	1	<1	<1	0	<1	<1	0
	Benz(a)anthracene	µg/l	1	<1	<1	0	<1	<1	0
	Benzo(a) pyrene	µg/l	1:0.5 (Interlab)	<1	<1	0	<1	<0.5	0
	Benzo[b+j]fluoranthene Benzo(k)fluoranthene	µg/l µg/l	1	<1 <1	<1 <1	0	<1 <1	<1 <1	0
	Benzo(g,h,i)perylene	µg/l	1	<1	<1	0	<1	<1	0
	Chrysene	µg/l	1	<1	<1	0	<1	<1	0
	Dibenz(a,h)anthracene	µg/l	1	<1	<1	0	<1	<1	0
	Fluoranthene Fluorene	µg/l	1	<1 <1	<1 <1	0	<1 <1	<1 <1	0
	Indeno(1,2,3-c,d)pyrene	µg/l µg/l	1	<1	<1	0	<1	<1	0
	Naphthalene-PAH	µg/l	1	<1	<1	0	<1		
	Phenanthrene	µg/l	1	<1	<1	0	<1	<1	0
	Pyrene PAHs (Sum of total) - Lab calc	µg/l µg/l	1 1 : 0.5 (Interlab)	<1 <1	<1 <1	0	<1 <1	<1 <0.5	0
VOC	1,1-dichloroethane	µg/l	1 : 5 (Interlab)	<1	<1	0	<1	<5	0
100	1,2,3-trichloropropane	µg/l	1 : 5 (Interlab)	<1	<1	0	<1	<5	0
	1,2-dibromoethane	µg/l	1:5 (Interlab)	<1	<1	0	<1	<5	0
	1,3-dichlorobenzene	µg/l	1:5 (Interlab)	<1	<1	0	<1	<5	0
	Bromodichloromethane Bromoform	µg/l	1 : 5 (Interlab) 1 : 5 (Interlab)	<1 <1	<1 <1	0	<1 <1	<5 <5	0
	Chlorodibromomethane	µg/l µg/l	1 : 5 (Interlab)	<1	<1	0	<1 <1	<> <5	0
	cis-1,3-dichloropropylene	µg/l	1 : 5 (Interlab)	<1	<1	0	<1	<5	0
	Dibromomethane	µg/l	1:5 (Interlab)	<1	<1	0	<1	<5	0
	Iodomethane	µg/l	1:5 (Interlab)	<1	<1	0	<1	<5	0
	Trichloroethene Tetrachloroethene	µg/l µg/l	1 : 5 (Interlab) 1 : 5 (Interlab)	<1 <1	<1 <1	0	<1 <1	<5 <5	0
	trans-1,3-dichloropropylene	µg/l	1 : 5 (Interlab)	<1	<1	0	<1 <1	<5	0
	trans-1,2-dichloroethene	µg/l	1:5 (Interlab)	<1	<1	0	<1	<5	0
	Trichlorofluoromethane Bromomethane	µg/l	1 : 50 (Interlab) 1 : 50 (Interlab)	<1 <1	<1 <1	0	<1 <1	<50 <50	0
		µg/l							
PCB	Arochlor 1016 Arochlor 1221	µg/l µg/l	1	<1 <1	<1 <1	0	<1 <1		+
	Arochlor 1221 Arochlor 1232	µg/l	1	<1	<1	0	<1 <1	<u> </u>	+
	Arochlor 1242	µg/l	1	<1	<1	0	<1		
	Arochlor 1248 Arochlor 1254	µg/l µg/l	1	<1 <1	<1 <1	0	<1 <1		
	Arochlor 1260	µg/l	1	<1	<1	0	<1		
	PCBs (Total)	µg/l	1	<1	<1	0	<1	<1	0
VOC	Chlorinated hydrocarbons EPAVic	µg/l	5	<5	<5	0	<5		
	Other chlorinated hydrocarbons (Total)	µg/l	5 1 · F (Interlah)	<5	<5	0	<5		
	1,1,1,2-tetrachloroethane	µg/l µg/l	1 : 5 (Interlab) 1 : 5 (Interlab)	<1 <1	<1 <1	0	<1 <1	<5 <5	0
	1,1,1-tricnioroetnane 1,1,2,2-tetrachloroethane	µg/l	1 : 5 (Interlab)	<1	<1	0	<1	<> <5	0
	1,1,2-trichloroethane	µg/l	1 : 5 (Interlab)	<1	<1	0	<1	<5	0
	1,1-dichloroethene	µg/l	1:5 (Interlab)	<1	<1	0	<1	<5	0
	1,2-dichlorobenzene 1,2-dichloroethane	µg/l	1 : 5 (Interlab) 1 : 5 (Interlab)	<1 <1	<1 <1	0	<1 <1	<5 <5	0
	1,2-dichloropthane 1,2-dichloropropane	µg/l µg/l	1 : 5 (Interlab) 1 : 5 (Interlab)	<1 <1	<1 <1	0	<1 <1	<5 <5	0
	1,3-dichloropropane	µg/l	1 : 5 (Interlab)	<1	<1	0	<1	<5	0
	1,4-dichlorobenzene	µg/l	1:5 (Interlab)	<1	<1	0	<1	<5	0
	Carbon tetrachloride	µg/l	1:5 (Interlab)	<1	<1	0	<1	<5	0
	Chlorobenzene Chloroform	µg/l µg/l	1:5 (Interlab)	<1 <5	<1 <5	0	<1 <5	<5 <5	0
	Chloromethane	µg/l	1 : 50 (Interlab)	<1	<1	0	<0 <1	<50	0
	cis-1,2-dichloroethene	µg/l	1 : 5 (Interlab)	<1	<1	0	<1	<5	0
	Dichloromethane Vinyl chloride	µg/l µg/l	1 1 : 50 (Interlab)	<1 <1	<1 <1	0	<1 <1	<50	0
		/1				. 0		50	. ^

*RPDs have only been considered where a concentration is greater than 1 times the EQL. **High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 200 (1-10 x EQL); 50 (10-30 x EQL); 50 (> 30 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Filter: ALL N:\AU\Sydney\Projects\21\27850\Tech\laboratory_results\Chemistry QA Checker1

Page 1 of 1

Appendix E RPD Field Duplicates - Soil

Ku-ring-gai Council Lindfield Village Hub

Field Duplicates (so Filter: ALL	oil)		SDG Field ID Sampled Date/Time	BH1_0.5	5-Dec-18 BH1_0.5D 5/12/2018	RPD		ALSE-Sydney 07-Dec-18 BH1_0.5ID 5/12/2018	8 RPD
Method_Type	ChemName	Units	EQL						
Inorganic	Moisture Content (%)	%	1	20	19	5	20		
Heavy Metal	Arsenic	ma/ka	2:5 (Interlab)	4.4	3.3	29	4.4	7	46
	Beryllium	mg/kg	2:1 (Interlab)	<2	<2	0	<2	<1	0
	Boron Cadmium		10 : 50 (Interlab)	<10	<10	0	<10	<50	0
	Cadmium Chromium (III+VI)		0.4 : 1 (Interlab) 5 : 2 (Interlab)	<0.4	<0.4 8.4	0	<0.4 11	<1 10	0
	Cobalt	mg/kg	5:2 (Interlab)	<5	<5	0	<5	<2	0
	Copper Iron	mg/kg		15 4100	15 3500	0	15 4100	<u>18</u> 6480	18 45
	Lead	mg/kg	20 : 50 (Interlab) 5	17	13	27	17	13	27
	Manganese	mg/kg	5	<5	<5	0	<5	<5	0
	Mercury Nickel	mg/kg	0.1 5 : 2 (Interlab)	<0.1 <5	<0.1 <5	0	<0.1 <5	<0.1 <2	0
	Selenium		2 : 5 (Interlab)	<2	<2	0	<2	<5	0
-	Zinc	mg/kg	1 . ,	<5	<5	0	<5	7	33
al Organic	Naphthalene (BTEXN)	mg/kg	0.5	<0.5	<0.5	0	<0.5		
Organic		піу/ку	0.5	<0.5	<0.5	0	<0.5		+
Volatile	Benzene		0.1 : 0.2 (Interlab)	<0.1	<0.1	0	<0.1	<0.2	0
	Toluene		0.1 : 0.5 (Interlab)	<0.1 <0.1	<0.1 <0.1	0	<0.1 <0.1	<0.5 <0.5	0
	Ethylbenzene Xylene (o)		0.1 : 0.5 (Interlab) 0.1 : 0.5 (Interlab)	<0.1	<0.1 <0.1	0	<0.1	<0.5	0
	Xylene (m & p)	mg/kg	0.2 : 0.5 (Interlab)	<0.2	<0.2	0	<0.2	<0.5	0
	Xylene Total	mg/kg	0.3 : 0.5 (Interlab)	<0.3	<0.3	0	<0.3	<0.5	0
Organic	F1 (C6-C10 minus BTEX)	ma/ka	20 : 10 (Interlab)	<20	<20	0	<20	<10	0
	C6-C10 Fraction	mg/kg	20 : 10 (Interlab)	<20	<20	0	<20	<10	0
	F2 (>C10-C16 minus Naphthalene)	mg/kg	50	<50	<50	0	<50	<50	0
	>C10-C16 Fraction F3 (>C16-C34 Fraction)	mg/kg mg/kg	50 100	<50 <100	<50 <100	0	<50 <100	<50 <100	0
	F4 (>C34-C40 Fraction)	mg/kg	100	<100	<100	0	<100	<100	0
	>C10-C40 (Sum of Total)	mg/kg	100 : 50 (Interlab)	<100	<100	0	<100	<50	0
	C6-C9 Fraction	mg/kg	20 : 10 (Interlab)	<20	<20	0	<20	<10	0
ТРН	C10-C14 Fraction	ma/ka	20 : 50 (Interlab)	<20	43	73	<20	<50	0
	C15-C28 Fraction	00	50 : 100 (Interlab)	<50	56	11	<50	<100	0
	C29-C36 Fraction		50 : 100 (Interlab)	<50	52	4	<50	<100	0
	C10-C36 (Sum of Total)	mg/kg	50	<50	151	100	<50	<50	0
PAH	Acenaphthene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	Acenaphthylene	mg/kg		<0.5	<0.5	0	<0.5	<0.5	0
	Anthracene Benz(a)anthracene	mg/kg mg/kg		<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
	Benzo(a) pyrene	mg/kg		<0.5	<0.5	0	<0.5	<0.5	0
	Benzo[b+j]fluoranthene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	Benzo(k)fluoranthene Benzo(g,h,i)perylene	mg/kg mg/kg		<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
	Chrysene	mg/kg		<0.5	<0.5	0	<0.5	<0.5	0
	Dibenz(a,h)anthracene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	Fluoranthene	mg/kg		<0.5	<0.5	0	<0.5	<0.5	0
	Fluorene Indeno(1,2,3-c,d)pyrene	mg/kg mg/kg		<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
	Naphthalene-PAH	mg/kg	0.5	<0.5	<0.5	0	<0.5		
	Phenanthrene	mg/kg		< 0.5	<0.5	0	<0.5	<0.5	0
	Pyrene PAHs (Sum of total) - Lab calc	mg/kg mg/kg		<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
	Total 8 PAHs (as BaP TEQ)(zero LOR) - Lab Calc	mg/kg		<0.5	<0.5	0	<0.5	<0.5	0
	Total 8 PAHs (as BaP TEQ)(half LOR) - Lab Calc	mg/kg		0.6	0.6	0	0.6	0.6	0
	Total 8 PAHs (as BaP TEQ)(full LOR) - Lab Calc	mg/kg	0.5	1.2	1.2	0	1.2	1.2	0
VOC	1,1-dichloroethane	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	1,2,3-trichloropropane	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	1,2-dibromoethane 1,3-dichlorobenzene	mg/kg mg/kg		<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
	Bromodichloromethane	mg/kg		<0.5	<0.5	0	<0.5	<0.5	0
	Bromoform	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	Chlorodibromomethane cis-1,3-dichloropropylene	mg/kg mg/kg	0.5	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
	Dibromomethane	mg/kg		<0.5	<0.5	0	<0.5	<0.5	0
	Iodomethane	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	Trichloroethene	mg/kg		<0.5	< 0.5	0	<0.5	<0.5	0
	Tetrachloroethene trans-1,3-dichloropropylene	mg/kg mg/kg		<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
	trans-1,2-dichloroethene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	Trichlorofluoromethane	mg/kg	0.5 : 5 (Interlab)	<0.5	<0.5	0	<0.5	<5	0
	Bromomethane Chlorinated hydrocarbons EPAVic	mg/kg mg/kg	0.5 : 5 (Interlab)	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<5	0
	Other chlorinated hydrocarbons (Total)	mg/kg		<0.5	<0.5	0	<0.5		+
	1,1,1,2-tetrachloroethane	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	1,1,1-trichloroethane 1,1,2,2-tetrachloroethane	mg/kg		<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
	1,1,2,2-tetrachioroethane	mg/kg mg/kg		<0.5	<0.5	0	<0.5	<0.5	0
	1,1-dichloroethene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	1,2-dichlorobenzene	mg/kg		<0.5	< 0.5	0	<0.5	<0.5	0
	1,2-dichloroethane 1,2-dichloropropane	mg/kg mg/kg		<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
	1,3-dichloropropane	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	1,4-dichlorobenzene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	Carbon tetrachloride	mg/kg		<0.5	< 0.5	0	<0.5	<0.5	0
	Chlorobenzene Chloroform	mg/kg mg/kg		<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
	1			<0.5	<0.5	0	<0.5	<5	0
	Chloromethane		0.5 : 5 (Interlab)						
	Chloromethane cis-1,2-dichloroethene Dichloromethane	mg/kg mg/kg mg/kg	0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	0	<0.5 <0.5 <0.5	<0.5	0

**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 200 (1-10 x EQL); 50 (10-30 x EQL); 50 (> 30 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Filter: ALL N:\AU\Sydney\Projects\21\27850\Tech\laboratory_results\Chemistry QA Checker1

Page 1 of 1

												Me	tals										
	Arsenic	Arsenic (filtered)	Beryllium	Boron	Cadmium	Cadmium (filtered)	Chromium (III+VI)	Chromium (III+VI) (filtered)	Cobalt	Copper	Copper (filtered)	Iron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Selenium	Zinc
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
EQL	0.001	0.001	0.001	0.05	0.0002	0.0001	0.001	0.001	0.001	0.001	0.001	0.05	0.05	0.001	0.001	0.005	0.001	0.0001	0.0001	0.001	0.001	0.001	0.005
NEPM 2013 Table 1C GILs, Fresh Waters				0.37#1	0.0002 ^{#2}	0.0002 ^{#2}	0.001 ^{#1}	0.001*1		0.0014 ^{#2}	0.0014 ^{#2}			0.0034 #2	0.0034 ^{#2}	1.9 ^{#1}	1.9 ^{#1}	6E-05 ^{#3}	6E-05 ^{#3}	0.011 ^{#2}	0.011#2	0.005 ^{#3}	0.008 ^{#2}
ANZECC 2000 FW Med-Low Reliability	0.013 ^{#5}	0.013 ^{#5}	0.00013	0.37	0.0002	0.0002			0.0014	0.0014	0.0014	0.3	0.3	0.0034	0.0034	1.7	1.7			0.011	0.011	0.005 0.011	0.008

Location Code BH5 BH5 BH5 BH6 GHD_BH1 GHD_BH1A Field ID Sample Type BH5 Normal 0.001 3.2 3.7 < 0.001 0.002 < 0.001 QC01 Field_D 0.003 3.1 <0.00 <0.00 < 0.001 3.7 0.062 QC02 Interlab_D < 0.001 < 0.0001 < 0.001 2.85 0.004 3.40 **0.002** 0.022 1.2 0.002 5.5 Normal <0.001 0.003 BH6 < 0.0002 2.1 GHD_BH1 44 Normal < 0.001 <0.0002 <0.001 0.057 GHD_BH1A Normal < 0.001 < 0.001 58 0.002 5.8 < 0.0002 Rinsate <(R1 Rinsate < 0.05 <0 R2 < 0.001 < 0.001 < 0.0002 < 0.001 < 0.001 < 0.05 < 0.005 < 0.001 < 0.001 RB01 TRIP BLANK Rinsate < 0.001 < 0.05 < 0.005 <0. <0.001 < 0.001 Trip_B

Comments

#1 Figure may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance.

#2 Values calculated using hardness of 30 mg/L CaCO3. Refer ANZECC & ARMCANZ (2000) for site specific hardness guidance

#3 Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZECC & ARMCANZ (2000) for further guidance.

#4 Measurement based on value for p-Xylene

#5 As (V) used as conservative value

	<0.0001		0.023		
	<0.0001		0.023		
	<0.0001		0.028		
	<0.0001		0.047		
	<0.0001		0.035		
	<0.0001		0.084		
0.0001		< 0.001		< 0.001	< 0.005
0.0001		< 0.001		< 0.001	< 0.005
0.0001		< 0.001			<0.005

					BT	EXN						TF	RH - NEPM 20	013				TF	RH - NEPM 19	999			
	Zinc (filtered)	Benzene	Toluene	Ethylbenzene	Xylene (o)	Xylene (m & p)	Xylene Total	Naphthalene (BTEXN)	BTEX (Sum of Total) - Lab Calc	F1 (C6-C10 minus BTEX)	C6-C10 Fraction	F2 (>C10-C16 minus Naphthalene)	>C10-C16 Fraction	F3 (>C16-C34 Fraction)	F4 (>C34-C40 Fraction)	>C10-C40 (Sum of Total)	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 (Sum of Total)	Acenaphthene	Acenaphthylene
	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
QL	0.005	1	1	1	1	2	2	10	1	20	20	50	50	100	100	100	20	50	100	50	50	1	1
EPM 2013 Table 1C GILs, Fresh Waters	0.008**	950			350	200#4		16															
VZECC 2000 FW Med-Low Reliability	0.008	950	180	80	350			16															

	Sample Type																							
BH5	Normal	0.054	<1	<1	<1	<1	<2	<3	<10		<20	<20	<50	<50	<100	<100	<100	<20	<50	<100	<100	<100	<1	<1
QC01	Field_D	0.055	<1	<1	<1	<1	<2	<3	<10		<20	<20	<50	<50	<100	<100	<100	<20	<50	<100	<100	<100	<1	<1
QC02	Interlab_D	0.127	<1	<2	<2	<2	<2	<2		<1	<20	<20	<100	<100	<100	<100	<100	<20	<50	<100	<50	<50	<1.0	<1.0
BH6	Normal	0.14	<1	<1	<1	<1	<2	<3	<10		<20	<20	<50	<50	<100	<100	<100	<20	<50	<100	<100	<100	<1	<1
GHD_BH1	Normal	0.072	<1	<1	<1	<1	<2	<3	<10		<20	<20	<50	<50	<100	<100	<100	<20	<50	<100	<100	<100	<1	<1
GHD_BH1A	Normal	0.17	<1	<1	<1	<1	<2	<3	<10		<20	<20	<50	<50	<100	<100	<100	<20	<50	<100	<100	<100	<1	<1
R1	Rinsate		<1	<1	<1	<1	<2	<3	<10		<20	<20	<50	<50	<100	<100	<100	<20	<50	<100	<100	<100	<1	<1
R2	Rinsate		<1	<1	<1	<1	<2	<3	<10		<20	<20	<50	<50	<100	<100	<100	<20	<50	<100	<100	<100	<1	<1
RB01	Rinsate		<1	<1	<1	<1	<2	<3	<10		<20	<20	<50	<50	<100	<100	<100	<20	<50	<100	<100	<100	<1	<1
TRIP BLANK	Trip_B		<1	<1	<1	<1	<2	<3	<10		<20	<20						<20						
	BH5 QC01 QC02 BH6 GHD_BH1 GHD_BH1 R1 R2 RB01	BH5 Normal QC01 Field_D QC02 Interlab_D BH6 Normal GHD_BH1 Normal GHD_BH1A Normal R1 Rinsate R2 Rinsate RB01 Rinsate	BH5 Normal 0.054 QC01 Field_D 0.055 QC02 Interlab_D 0.127 BH6 Normal 0.14 GHD_BH1 Normal 0.072 GHD_BH1A Normal 0.17 R1 Rinsate R R2 Rinsate R RB01 Rinsate	BH5 Normal 0.054 <1 QC01 Field_D 0.055 <1	BH5 Normal 0.054 <1 <1 QC01 Field_D 0.055 <1	BH5 Normal 0.054 <1 <1 <1 <1 QC01 Field_D 0.055 <1	BH5 Normal 0.054 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	BH5 Normal 0.054 <1 <1 <1 <1 <2 QC01 Field_D 0.055 <1	BH5 Normal 0.054 <1 <1 <1 <2 <3 QC01 Field_D 0.055 <1	BH5 Normal 0.054 <1 <1 <1 <1 <2 <3 <10 QC01 Field_D 0.055 <1	BH5 Normal 0.054 <1 <1 <1 <1 <2 <3 <10 QC01 Field_D 0.055 <1	BH5 Normal 0.054 <1 <1 <1 <1 <2 <3 <10 <20 QC01 Field_D 0.055 <1	BH5 Normal 0.054 <1 <1 <1 <2 <3 <10 <20 <20 <20 QC01 Field_D 0.055 <1	BH5 Normal 0.054 <1 <1 <1 <1 <2 <3 <10 <20 <20 <50 QC01 Field_D 0.055 <1	BH5 Normal 0.054 <1 <1 <1 <1 <2 <3 <10 <20 <20 <20 <50 <50 QC01 Field_D 0.055 <1	BH5 Normal 0.054 <1 <1 <1 <2 <3 <10 <20 <20 <50 <50 <100 QC01 Field_D 0.055 <1	BH5 Normal 0.054 <1 <1 <1 <1 <2 <3 <10 <20 <20 <50 <50 <100 <100 QC01 Field_D 0.055 <1 <1 <1 <1 <2 <3 <10 <20 <20 <20 <50 <50 <100 <100 QC01 Field_D 0.055 <1 <1 <1 <1 <2 <3 <10 <20 <20 <20 <50 <50 <100 <100 QC02 Interlab_D 0.127 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	BH5 Normal 0.054 <1 <1 <1 <2 <3 <10 <20 <20 <50 <50 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100	BH5 Normal 0.054 <1 <1 <1 <1 <2 <3 <10 <20 <20 <50 <50 <100 <100 <20 <20 QC01 Field_D 0.055 <1 <1 <1 <1 <2 <3 <10 <20 <20 <50 <50 <100 <100 <20 QC01 Field_D 0.055 <1 <1 <1 <1 <2 <3 <10 <20 <20 <50 <50 <100 <100 <20 <20 QC02 Interlab_D 0.127 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	BH5 Normal 0.054 <1 <1 <1 <2 <3 <10 <20 <20 <50 <100 <100 <100 <20 <50 QC01 Field_D 0.055 <11 <11 <11 <2 <3 <10 <20 <20 <50 <50 <100 <100 <20 <50 QC01 Field_D 0.055 <11 <1 <1 <1 <2 <3 <10 <20 <20 <50 <100 <100 <100 <20 <50 QC02 Interlab_D 0.127 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <td>BH5 Normal 0.054 <1 <1 <1 <2 <3 <10 <20 <20 <50 <50 <100 <100 <20 <100 <100</td> <td>BH5 Normal 0.054 <1 <1 <1 <2 <3 <10 <20 <20 <50 <100 <100</td> <td>BH5 Normal 0.054 <1 <1 <1 <2 <3 <10 <20 <20 <50 <100 <100</td> <td>BH5 Normal 0.054 <1 <1 <1 <2 <3 <10 <20 <20 <50 <100 <100</td>	BH5 Normal 0.054 <1 <1 <1 <2 <3 <10 <20 <20 <50 <50 <100 <100 <20 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100	BH5 Normal 0.054 <1 <1 <1 <2 <3 <10 <20 <20 <50 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100	BH5 Normal 0.054 <1 <1 <1 <2 <3 <10 <20 <20 <50 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100	BH5 Normal 0.054 <1 <1 <1 <2 <3 <10 <20 <20 <50 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100

Comments #1 Figure may not protect key species from chronic toxicity, refer to ANZECC #2 Values calculated using hardness of 30 mg/L CaCO3. Refer ANZECC & / #3 Chemical for which possible bioaccumulation and secondary poisoning ef #4 Measurement based on value for p-Xylene

. #5 As (V) used as conservative value

										PAHs															
			Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo[b+j]fluoranthene	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Naphthalene	Fluorene	Indeno(1,2,3- c,d)pyrene	Naphthalene-PAH	Phenanthrene	Pyrene	PAHs (Sum of total) - Lab calc	Total 8 PAHs (as BaP TEQ)(zero LOR) - Lab Calc	1,1-dichloroethane	1,2,3-trichlorobenzene	1,2,3-trichloropropane	1,2-dibromoethane	1,3-dichlorobenzene	Bromodichloromethane
			μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
EQL			1	1	0.5	1	1	1	1	1	1	1	1	1	1	1	1	0.5	0.5	1	5	1	1	1	1
NEPM 2013 Table 1C	GILs, Fresh Waters											16			16						3 ^{#3}			260	
ANZECC 2000 FW Me			0.01		0.1						1	16			16	0.6				90	3			260	
Location Code	Field ID	Sample Type																							
BH5	BH5	Normal	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1	1	<1	<1	<1	<1
DUE	0004	Eistel D	- 4	- 4		- 4		- 4		- 4	- 4		- 4	- 4	- 4		- 4	- 4		- 4	1		- 4	- 4	- 4

				1				1			1	1	1					1	1	1		1		-	· · · · · · · · · · · · · · · · · · ·
BH5	BH5	Normal	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1		<1	<1	<1	<1
BH5	QC01	Field_D	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1		<1	<1	<1	<1
BH5	QC02	Interlab_D	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<0.5	<0.5	<5	<5	<5	<5	<5	<5
BH6	BH6	Normal	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1		<1	<1	<1	<1
GHD_BH1	GHD_BH1	Normal	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1		<1	<1	<1	<1
GHD_BH1A	GHD_BH1A	Normal	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1		<1	<1	<1	<1
	R1	Rinsate	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1		<1	<1	<1	<1
	R2	Rinsate	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1		<1	<1	<1	<1
	RB01	Rinsate	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1		<1	<1	<1	<1
	TRIP BLANK	Trip_B																							

Comments #1 Figure may not protect key species from chronic toxicity, refer to ANZEC(#2 Values calculated using hardness of 30 mg/L CaCO3. Refer ANZECC & / #3 Chemical for which possible bioaccumulation and secondary poisoning ef #4 Measurement based on value for p-Xylene #5 As (V) used as conservative value

						V	OCs										Halog	enated				PC	Bs		
			Bromoform	Chlorodibromomethane	Chloroethane	cis-1,3-dichloropropene	cis-1,4-Dichloro-2- butene	Dibromomethane	lodomethane	Pentachloroethane	Trichloroethene	Tetrachloroethene	trans-1,3- dichloropropene	trans-1,2- dichloroethene	trans-1,4-Dichloro-2- butene	Trichlorofluoromethane	Bromomethane	Dichlorodifluoromethan e	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260
			µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
EQL			1	1	50	1	5	1	1	5	1	1	1	1	5	1	1	50	1	1	1	1	1	1	1
NEPM 2013 Table 10	C GILs, Fresh Waters																					0.3 ^{#3}		0.01 ^{#3}	
ANZECC 2000 FW M	led-Low Reliability									80	330	70							0.001	1	0.3	0.3	0.03	0.01	
Location Code	Field ID	Sample Type																							
BH5	BH5	Normal	<1	<1		<1		<1	<1		<1	<1	<1	<1		<1	<1		<1	<1	<1	<1	<1	<1	<1
BH5	QC01	Field_D	<1	<1		<1		<1	<1		<1	<1	<1	<1		<1	<1		<1	<1	<1	<1	<1	<1	<1
BH5	QC02	Interlab_D	<5	<5	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<50	<50							
BH6	BH6	Normal	<1	<1		<1		<1	<1		<1	<1	<1	<1		<1	<1								
GHD_BH1	GHD_BH1	Normal	<1	<1		<1		<1	<1		<1	<1	<1	<1		<1	<1								
GHD_BH1A	GHD_BH1A	Normal	<1	<1		<1		<1	<1		<1	<1	<1	<1		<1	<1								
	R1	Rinsate	<1	<1		<1		<1	<1		<1	<1	<1	<1		<1	<1		<5	<1	<5	<5	<5	<5	<5
	R2	Rinsate	<1	<1		<1		<1	<1		<1	<1	<1	<1		<1	<1								
	RB01	Rinsate	<1	<1		<1		<1	<1		<1	<1	<1	<1		<1	<1		<1	<1	<1	<1	<1	<1	<1
	TRIP BLANK	Trip_B																							

Comments #1 Figure may not protect key species from chronic toxicity, refer to ANZEC(#2 Values calculated using hardness of 30 mg/L CaCO3. Refer ANZECC & / #3 Chemical for which possible bioaccumulation and secondary poisoning ef #4 Measurement based on value for p-Xylene #5 As (V) used as conservative value

														Chlori	nated Hydroc	arbons							
	PCBs (Total)	Chlorinated hydrocarbons EPAVic	Other chlorinated hydrocarbons (Total)	1,1,1,2- tetrachloroethane	1,1,1-trichloroethane	1,1,2,2- tetrachloroethane	1,1,2-trichloroethane	1,1-dichloroethene	1,1-dichloropropene	1,2,4-trichlorobenzene	1,2-dibromo-3- chloropropane	1,2-dichlorobenzene	1,2-dichloroethane	1,2-dichloropropane	1,3-dichloropropane	1,4-dichlorobenzene	2,2-dichloropropane	2-chlorotoluene	4-chlorotoluene	Bromobenzene	Carbon tetrachloride	Chlorobenzene	Chloroform
	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
EQL	1	5	5	1	1	1	1	1	5	5	5	1	1	1	1	1	5	5	5	5	1	1	5
NEPM 2013 Table 1C GILs, Fresh Waters							6,500			85 ^{#3}		160				60							
ANZECC 2000 FW Med-Low Reliability					270	400	6,500	700		85		160	1,900	900	1,100	60					240	55	370
Location Code Field ID Sample Type													1		I	1	1	1			1		

BH5	BH5	Normal	<1	<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1					<1	<1	<5
BH5	QC01	Field_D	<1	<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1					<1	<1	<5
BH5	QC02	Interlab_D	<1			<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
BH6	BH6	Normal		<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1					<1	<1	<5
GHD_BH1	GHD_BH1	Normal		<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1					<1	<1	<5
GHD_BH1A	GHD_BH1A	Normal		<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1					<1	<1	<5
	R1	Rinsate	<1	<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1					<1	<1	<5
	R2	Rinsate		<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1					<1	<1	<5
	RB01	Rinsate	<1	<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1					<1	<1	<5
	TRIP BLANK	Trip_B																							

Comments #1 Figure may not protect key species from chronic toxicity, refer to ANZEC(#2 Values calculated using hardness of 30 mg/L CaCO3. Refer ANZECC & / #3 Chemical for which possible bioaccumulation and secondary poisoning ef #4 Measurement based on value for p-Xylene #5 As (V) used as conservative value

Chloromethane	cis-1,2-dichloroethene	Methylene chloride	Hexachlorobutadiene	Vinyl chloride
µg/L	µg/L	µg/L	µg/L	µg/L
1	1	1	5	1
		4,000	0.04	100

Location Code	Field ID	Sample Type					
BH5	BH5	Normal	<1	<1	<1		<1
BH5	QC01	Field_D	<1	<1	<1		<1
BH5	QC02	Interlab_D	<50	<5		<5	<50
BH6	BH6	Normal	<1	<1	<1		<1
GHD_BH1	GHD_BH1	Normal	<1	<1	<1		<1
GHD_BH1A	GHD_BH1A	Normal	<1	<1	<1		<1
	R1	Rinsate	<1	<1	<1		<1
	R2	Rinsate	<1	<1	<1		<1
	RB01	Rinsate	<1	<1	<1		<1
	TRIP BLANK	Trip_B					

Comments #1 Figure may not protect key species from chronic toxicity, refer to ANZECC #2 Values calculated using hardness of 30 mg/L CaCO3. Refer ANZECC & / #3 Chemical for which possible bioaccumulation and secondary poisoning ef #4 Measurement based on value for p-Xylene

. #5 As (V) used as conservative value

EQL NEPM 2013 Table 1C GILs, Fresh Waters ANZECC 2000 FW Med-Low Reliability

												Me	tals										
	Arsenic	Arsenic (filtered)	Beryllium	Boron	Cadmium	Cadmium (filtered)	Chromium (III+VI)	Chromium (III+VI) (filtered)	Cobalt	Copper	Copper (filtered)	Iron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Selenium	Zinc
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
EQL	0.001	0.001	0.001	0.05	0.0002	0.0001	0.001	0.001	0.001	0.001	0.001	0.05	0.05	0.001	0.001	0.005	0.001	0.0001	0.0001	0.001	0.001	0.001	0.005
ADWG 2011 Health (v3.5 updated 2018)	0.01	0.01	0.06	4	0.002	0.002				2	2			0.01	0.01	0.5	0.5	0.001	0.001	0.02	0.02	0.01	
ADWG 2011 Aesthetic (v3.5 updated 2018)										1	1	0.3	0.3			0.1	0.1						3 ^{#1}
NEPM 2013 Table 1A(4) HSL A/B Res GW for Vapour Intrusion, Sand																							
2-4m																							
NEPM 2013 Table 1C GILs, Fresh Waters				0.37#5	0.0002#8	0.0002#6	0.001#5	0.001#5		0.0014#6	0.0014#8			0.0034**	0.0034**	1.9**5	1.9#5	6E-05 ^{#7}	6E-05*7	0.011#8	0.011#6	0.005*7	0.008#6

Location Code	Field ID	Sample Type																					
BH5	BH5	Normal	< 0.001				<0.0002		0.001		0.002		3.2		< 0.001		3.7		<0.0001		0.023		
BH5	QC01	Field_D	< 0.001				<0.0002		< 0.001		0.003		3.1		< 0.001		3.7		<0.0001		0.023		1
BH5	QC02	Interlab_D	< 0.001				<0.0001		<0.001		0.062		2.85		0.004		3.40		<0.0001		0.028		1
BH6	BH6	Normal	< 0.001				<0.0002		0.002		0.022		1.2		0.002		5.5		<0.0001		0.047		1
GHD_BH1	GHD_BH1	Normal	0.003				<0.0002		<0.001		< 0.001		44		< 0.001		2.1		<0.0001		0.035		
GHD_BH1A	GHD_BH1A	Normal	< 0.001				<0.0002		<0.001		0.057		58		0.002		5.8		<0.0001		0.084		
	R1	Rinsate	<0.001	< 0.001	<0.05	<0.0002		< 0.001		< 0.001	< 0.001	< 0.05		< 0.001		<0.005		<0.0001		< 0.001		<0.001	< 0.005
	R2	Rinsate	<0.001	< 0.001	<0.05	<0.0002		< 0.001		< 0.001	< 0.001	< 0.05		< 0.001		<0.005		<0.0001		<0.001		<0.001	< 0.005
	RB01	Rinsate	<0.001			<0.0002		< 0.001			<0.001	< 0.05		< 0.001		<0.005		<0.0001		<0.001			< 0.005
	TRIP BLANK	Trip_B																					

#1 Natural concentrations generally <0.01 mg/L

#2 Not limiting: Derived water HSL exceeds water solubility limit

#3 To obtain F1 subtract the sum of BTEX concentrations from the C6 - C10 fraction.

#4 To obtain F2 subtract naphthalene from the >C10 - C16 fraction.

#5 Figure may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance.
#6 Values calculated using hardness of 30 mg/L CaCO3. Refer ANZECC & ARMCANZ (2000) for site specific hardness guidance
#7 Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZECC & ARMCANZ (2000) for further guidance.

#8 Measurement based on value for p-Xylene

Environmental Standards

National Health and Medical Research Council, August 2018, ADWG 2011 Health (v3.5 updated 2018)

National Health and Medical Research Council, August 2018, ADWG 2011 Aesthetic (v3.5 updated 2018)

					BT	EXN						TR	H - NEPM 2	013				TF	RH - NEPM 1	999			
	Zinc (filtered)	Benzene	Toluene	Ethylbenzene	Xylene (o)	Xylene (m & p)	Xylene Total	Naphthaiene (BTEXN)	BTEX (Sum of Total) - Lab Calc	F1 (C6-C10 minus BTEX)	C6-C10 Fraction	F2 (>C10-C16 minus Naphthalene)	>C10-C16 Fraction	F3 (>C16-C34 Fraction)	F4 (>C34-C40 Fraction)	≻C10-C40 (Sum of Total)	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 (Sum of Total)	Acenaphthene	Acenaphthylene
	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
EQL	0.005	1	1	1	1	2	2	10	1	20	20	50	50	100	100	100	20	50	100	50	50	1	1
ADWG 2011 Health (v3.5 updated 2018)		1	800	300			600																
ADWG 2011 Aesthetic (v3.5 updated 2018)	3 ^{#1}		25	3			20																
NEPM 2013 Table 1A(4) HSL A/B Res GW for Vapour Intrusion, Sand																							
2-4m		800	NL	NL			NL	NL		1,000 ^{#3}		1,000#4											
NEPM 2013 Table 1C GILs, Fresh Waters	0.008#6	950			350	200#8		16															

Location Code	Field ID	Sample Type																						
BH5	BH5	Normal	0.054	<1	<1	<1	<1	<2	<3	<10	<2	<20	<50	<50	<100	<100	<100	<20	<50	<100	<100	<100	<1	<1
BH5	QC01	Field_D	0.055	<1	<1	<1	<1	<2	<3	<10	<2	<20	<50	<50	<100	<100	<100	<20	<50	<100	<100	<100	<1	<1
BH5	QC02	Interlab_D	0.127	<1	<2	<2	<2	<2	<2		<1 <2	<20	<100		<100	<100	<100	<20	<50	<100	<50	<50	<1.0	<1.0
BH6	BH6	Normal	0.14	<1	<1	<1	<1	<2	<3	<10	<2	<20	<50	<50	<100	<100	<100	<20	<50	<100	<100	<100	<1	<1
GHD_BH1	GHD_BH1	Normal	0.072	<1	<1	<1	<1	<2	<3	<10	<2	<20	<50	<50	<100	<100	<100	<20	<50	<100	<100	<100	<1	<1
GHD_BH1A	GHD_BH1A	Normal	0.17	<1	<1	<1	<1	<2	<3	<10	<2	<20	<50	<50	<100	<100	<100	<20	<50	<100	<100	<100	<1	<1
	R1	Rinsate		<1	<1	<1	<1	<2	<3	<10	<2		<50	<50	<100	<100	<100	<20	<50	<100	<100	<100	<1	<1
	R2	Rinsate		<1	<1	<1	<1	<2	<3	<10	<2	<20	<50	<50	<100	<100	<100	<20	<50	<100	<100	<100	<1	<1
	RB01	Rinsate		<1	<1	<1	<1	<2	<3	<10	<2	<20	<50	<50	<100	<100	<100	<20	<50	<100	<100	<100	<1	<1
	TRIP BLANK	Trip_B		<1	<1	<1	<1	<2	<3	<10	<2	<20						<20						

#1 Natural concentrations generally <0.01 mg/L

#2 Not limiting: Derived water HSL exceeds water solubility limit

#3 To obtain F1 subtract the sum of BTEX concentrations from the C6 - (

#4 To obtain F2 subtract naphthalene from the >C10 - C16 fraction.

#5 Figure may not protect key species from chronic toxicity, refer to ANZE

#6 Values calculated using hardness of 30 mg/L CaCO3. Refer ANZECC #7 Chemical for which possible bioaccumulation and secondary poisoning

#8 Measurement based on value for p-Xylene

Environmental Standards

								PAHs															
	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo[b+j]fluoranthen e	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracen e	Fluoranthene	Naphthalene	Fluorene	Indeno(1,2,3- c,d)pyrene	Naphthalene-PAH	Phenanthrene	Pyrene	PAHs (Sum of total) - Lab calc	Total 8 PAHs (as BaP TEQ)(zero LOR) - Lab Calc	1,1-dichloroethane	1,2,3-trichlorobenzene	1,2,3-trichloropropane	1,2-dibromoethane	1,3-dichlorobenzene	Bromodichloromethan
	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L
EQL	1	1	0.5	1	1	1	1	1	1	1	1	1	1	1	1	0.5	0.5	1	5	1	1	1	1
ADWG 2011 Health (v3.5 updated 2018)			0.01													0.01					1		
ADWG 2011 Aesthetic (v3.5 updated 2018)																						20	
NEPM 2013 Table 1A(4) HSL A/B Res GW for Vapour Intrusion, Sand																				1			
2-4m										NL			NL										
NEPM 2013 Table 1C GILs, Fresh Waters										16			16						3#7			260	

Location Code	Field ID	Sample Type																							
BH5	BH5	Normal	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1		<1	<1	<1	<1
BH5	QC01	Field_D	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1		<1	<1	<1	<1
BH5	QC02	Interlab_D	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<0.5	<0.5	<5	<5	<5	<5	<5	<5
BH6	BH6	Normal	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1		<1	<1	<1	<1
GHD_BH1	GHD_BH1	Normal	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1		<1	<1	<1	<1
GHD_BH1A	GHD_BH1A	Normal	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1		<1	<1	<1	<1
	R1	Rinsate	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1		<1	<1	<1	<1
	R2	Rinsate	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1		<1	<1	<1	<1
	RB01	Rinsate	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1		<1	<1	<1	<1
	TRIP BLANK	Trip_B																							

#1 Natural concentrations generally <0.01 mg/L

#2 Not limiting: Derived water HSL exceeds water solubility limit

#3 To obtain F1 subtract the sum of BTEX concentrations from the C6 - (#4 To obtain F2 subtract naphthalene from the >C10 - C16 fraction.

#5 Figure may not protect key species from chronic toxicity, refer to ANZE

#6 Values calculated using hardness of 30 mg/L CaCO3. Refer ANZECC #7 Chemical for which possible bioaccumulation and secondary poisoning

#8 Measurement based on value for p-Xylene

Environmental Standards

						V	OCs										Halog	genated				PC	CBs		
			Bromoform	Chlorodibromomethan e	Chloroethane	cis-1,3- dichloropropene	cis-1,4-Dichloro-2- butene	Dibromomethane	lodomethane	Pentachloroethane	Trichloroethene	Tetrachloroethene	trans-1,3- dichloropropene	trans-1,2- dichloroethene	trans-1,4-Dichloro-2- butene	Trichlorofluoromethan e	Bromomethane	Dichlorodifluorometha ne	Arochlor 1016	Arochior 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260
			µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
EQL			1	1	50	1	5	1	1	5	1	1	1	1	5	1	1	50	1	1	1	1	1	1	1
ADWG 2011 Health (v												50	4				1			4				4	
ADWG 2011 Aesthetic																									<u> </u>
NEPM 2013 Table 1A	(4) HSL A/B Res GW f	or Vapour Intrusion, Sand																							
2-4m																									
NEPM 2013 Table 10	C GILs, Fresh Waters																					0.3*7		0.01**7	
Location Code	Field ID	Sample Type					<u> </u>				<u> </u>								<u> </u>					<u> </u>	
BH5	BH5	Normal	<1	<1		<1		<1	<1		<1	<1	<1	<1		<1	<1		<1	<1	<1	<1	<1	<1	<1
BH5	QC01	Field_D	<1	<1		<1	1	<1	<1		<1	<1	<1	<1		<1	<1		<1	<1	<1	<1	<1	<1	<1
BH5	QC02	Interlab_D	<5	<5	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<50	<50				1			
BH6	BH6	Normal	<1	<1		<1		<1	<1		<1	<1	<1	<1		<1	<1					1			
GHD_BH1	GHD_BH1	Normal	<1	<1		<1		<1	<1		<1	<1	<1	<1		<1	<1					1			
GHD_BH1A	GHD_BH1A	Normal	<1	<1		<1		<1	<1		<1	<1	<1	<1		<1	<1					1			
	D (D: /					1											1		-	1 _			- 57	

BH2	BH5	Normal	<1	<1		<1		<1	<1		<1	<1	<1	<1		<1	<1		<1	
BH5	QC01	Field_D	<1	<1		<1		<1	<1		<1	<1	<1	<1		<1	<1		<1	4
BH5	QC02	Interlab_D	<5	<5	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<50	<50		
BH6	BH6	Normal	<1	<1		<1		<1	<1		<1	<1	<1	<1		<1	<1			
GHD_BH1	GHD_BH1	Normal	<1	<1		<1		<1	<1		<1	<1	<1	<1		<1	<1			
GHD_BH1A	GHD_BH1A	Normal	<1	<1		<1		<1	<1		<1	<1	<1	<1		<1	<1			
	R1	Rinsate	<1	<1		<1		<1	<1		<1	<1	<1	<1		<1	<1		<5	-
	R2	Rinsate	<1	<1		<1		<1	<1		<1	<1	<1	<1		<1	<1			
	RB01	Rinsate	<1	<1		<1		<1	<1		<1	<1	<1	<1		<1	<1		<1	-
	TRIP BLANK	Trip_B																		

#1 Natural concentrations generally <0.01 mg/L

#2 Not limiting: Derived water HSL exceeds water solubility limit

#3 To obtain F1 subtract the sum of BTEX concentrations from the C6 - (#4 To obtain F2 subtract naphthalene from the >C10 - C16 fraction.

#5 Figure may not protect key species from chronic toxicity, refer to ANZE

#6 Values calculated using hardness of 30 mg/L CaCO3. Refer ANZECC #7 Chemical for which possible bioaccumulation and secondary poisoning

#8 Measurement based on value for p-Xylene

Environmental Standards

																Chlori	inated Hydrod	carbons							
			PCBs (Total)	Chlorinated hydrocarbons EPAVic	Other chlorinated hydrocarbons (Total)	1,1,1,2- tetrachloroethane	1,1,1-trichloroethane	1,1,2,2- tetrachloroethane	1,1,2-trichloroethane	1,1-dichloroethene	1,1-dichloropropene	1,2,4-trichlorobenzene	1,2-dibromo-3- chloropropane	1,2-dichlorobenzene	1,2-dichloroethane	1,2-dichloropropane	1,3-dichloropropane	1,4-dichlorobenzene	2,2-dichloropropane	2-chlorotoluene	4-chlorotoluene	Bromobenzene	Carbon tetrachloride	Chlorobenzene	Chloroform
FOI			µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
EQL ADWG 2011 Health (v3	2 E updated 2019)			5	5	1	1	1	- 1	30	5	5	5	1,500	2	1		40	5	5	5	5	2	300	5
										30				1,300	3			-					3		
ADWG 2011 Aesthetic		Veneur Intrusion, Cond												1				0.3						10	
	(4) HOL AVE Kes GW IOF	Vapour Intrusion, Sand																-						1	
2-4m NEPM 2013 Table 1C	CGILs, Fresh Waters								6,500			85 ^{#7}		160				60							
Location Code	Field ID	Sample Type																							
BH5	BH5	Normal	<1	<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1					<1	<1	<5
BH5	QC01	Field_D	<1	<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1					<1	<1	<5
BH5	QC02	Interlab_D	<1			<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
BH6	BH6	Normal		<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1					<1	<1	<5
GHD_BH1	GHD_BH1	Normal		<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1					<1	<1	<5
GHD_BH1A	GHD_BH1A	Normal		<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1					<1	<1	<5
	R1	Rinsate	<1	<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1					<1	<1	<5
(

Location Code	Field ID	Sample Type																		
BH5	BH5	Normal	<1	<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1		
BH5	QC01	Field_D	<1	<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1		
BH5	QC02	Interlab_D	<1			<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	
BH6	BH6	Normal		<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1		
GHD_BH1	GHD_BH1	Normal		<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1		
GHD_BH1A	GHD_BH1A	Normal		<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1		
	R1	Rinsate	<1	<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1		
	R2	Rinsate		<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1		
	RB01	Rinsate	<1	<5	<5	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1		1
	TRIP BLANK	Trip_B																		

#1 Natural concentrations generally <0.01 mg/L

#2 Not limiting: Derived water HSL exceeds water solubility limit

#3 To obtain F1 subtract the sum of BTEX concentrations from the C6 - (#4 To obtain F2 subtract naphthalene from the >C10 - C16 fraction.

#5 Figure may not protect key species from chronic toxicity, refer to ANZE

#6 Values calculated using hardness of 30 mg/L CaCO3. Refer ANZECC #7 Chemical for which possible bioaccumulation and secondary poisoning

#8 Measurement based on value for p-Xylene

Environmental Standards

	Chloromethane	cis-1,2-dichloroethene	Methylene chloride	Hexachlorobutadiene	Vinyl chloride
	µg/L	µg/L	µg/L	µg/L	µg/L
EQL	1	1	1	5	1
ADWG 2011 Health (v3.5 updated 2018)			4	0.7	0.3
ADWG 2011 Aesthetic (v3.5 updated 2018)					
NEPM 2013 Table 1A(4) HSL A/B Res GW for Vapour Intrusion, Sand					
2-4m					
NEPM 2013 Table 1C GILs, Fresh Waters					

Location Code BH5 BH5 BH5 BH6 GHD_BH1 GHD_BH1A Field ID Sample Type BH5 Normal <1 <1 <1 QC01 Field_D <1 <1 QC02 Interlab_D <50 <5 BH6 GHD_BH1 Normal <1 <1 <1 <1 Normal <1 <1 <1 <1 <1 <1 GHD_BH1A Normal <1 <1 <1 <1 <1 Rinsate <1 <1 R2 Rinsate <1 <1 RB01 TRIP BLANK Rinsate Trip_B <1 <1 <1 <1

Comments

#1 Natural concentrations generally <0.01 mg/L

#2 Not limiting: Derived water HSL exceeds water solubility limit

#3 To obtain F1 subtract the sum of BTEX concentrations from the C6 - (

#4 To obtain F2 subtract naphthalene from the >C10 - C16 fraction.

#5 Figure may not protect key species from chronic toxicity, refer to ANZE

#6 Values calculated using hardness of 30 mg/L CaCO3. Refer ANZECC

#7 Chemical for which possible bioaccumulation and secondary poisoning

#8 Measurement based on value for p-Xylene

Environmental Standards

National Health and Medical Research Council, August 2018, ADWG 201 National Health and Medical Research Council, August 2018, ADWG 201

	Inorg	anics	Asbestos								Metals										
	Moisture (%)	Moisture Content (%)	Asbestos Reported Result	Arsenic	Beryllium	Boron	Cadmium	Chromium (III+VI)	Cobalt	Copper	Iron	Lead	Manganese	Mercury		Nickel	Selenium	Zinc	Benzene	Toluene	Ethylbenzene
	%	%	Asbestos Detected	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	1	1		2	1	10	0.4	2	2	5	20	5	5	0.1	2	0.05	2	5	0.1	0.1	0.1
NEPM 2013 EIL-Urban Residential- Public Open Space																					
0-2m				100				190 ^{#1}		60 ^{#1}		1,100			30 ^{#1}			70 ^{#1}			
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil																					
0-2m																			50	85	70
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil																					

Location Code	Depth	Field ID	Sample Type																			
		TRIP BLANK	Trip_B																	<0.1	<0.1	<0.1
GHD_BH1	0.2 - 0.2	BH1_0.2	Normal	16	1	13	<2	<10	<0.4	16	<5	32	17,000	200	98	0.2	7.4	<2	160	<0.1	<0.1	<0.1
GHD_BH1	0.5 - 0.5	BH1_0.5	Normal	20		4.4	<2	<10	<0.4	11	<5	15	4,100	17	<5	<0.1	<5	<2	<5	<0.1	<0.1	<0.1
GHD_BH1	0.5 - 0.5	BH1_0.5D	Field_D	19		3.3	<2	<10	<0.4	8.4	<5	15	3,500	13	<5	<0.1	<5	<2	<5	<0.1	<0.1	<0.1
GHD_BH1	0.5 - 0.5	BH1_0.5ID	Interlab_D	17.9		7	<1	<50	<1	10	<2	18	6,480	13	<5	<0.1	<2	<5	7	<0.2	<0.5	<0.5
GHD_BH1	21.05 - 21.05	BH1_21.05	Normal	5.3																		
GHD_BH2	0.1 - 0.1	BH2_0.1	Normal	13	1	7.1	<2	<10	<0.4	24	5.6	27	31,000	100	150	0.2	19	<2	150	<0.1	<0.1	<0.1
GHD_BH2	0.5 - 0.5	BH2_0.5	Normal	20		9.9	<2	<10	<0.4	22	<5	16	40,000	25	12	<0.1	<5	<2	12	<0.1	<0.1	<0.1

#1 Develop site specific based on CEC, pH, clay content, state and traffic volume #2 To obtain F1 subtract the sum of BTEX concentrations from the C6 - C10 fraction.

#3 Errata 30 April 2014 - Naphthalene should not be subtracted from >C10-C16 (as there is no separate ESL for naphthalene)

#4 Separate management limits for BTEX & naphthalene are not available hence should not be subtracted from the relevant fractions to obtain F1 & F2

	B	EXN						TF	RH - NEPM 20)13				TF	RH - NEPM 1	999					
	Xylene (o)	Xylene (m & p)	Xylene Total	Naphthalene (BTEXN)	BTEX (Sum of Total) - Lab Calc	F1 (C6-C10 minus BTEX)	C6-C10 Fraction	F2 (>C10-C16 minus Naphthalene)	>C10-C16 Fraction	F3 (>C16-C34 Fraction)	F4 (>C34-C40 Fraction)	>C10-C40 (Sum of Total)	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 (Sum of Total)	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.1	0.2	0.3	0.5	0.2	10	10	50	50	100	100	50	10	20	50	50	50	0.5	0.5	0.5	0.5
NEPM 2013 EIL-Urban Residential- Public Open Space																					
0-2m				170																	
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil																					
0-2m			105			180 ^{#2}			120 ^{#3}	300	2,800										
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil							700 ^{#4}		1,000 #4	2,500	10,000										

Location Code	Depth	Field ID	Sample Type																					
		TRIP BLANK	Trip_B	<0.1	<0.2	<0.3	<0.5		<20	<20						<20								
GHD_BH1	0.2 - 0.2	BH1_0.2	Normal	<0.1	<0.2	<0.3	<0.5		<20	<20	<50	<50	<100	<100	<100	<20	39	56	<50	95	<0.5	<0.5	<0.5	<0.5
GHD_BH1	0.5 - 0.5	BH1_0.5	Normal	<0.1	<0.2	<0.3	<0.5		<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5
GHD_BH1	0.5 - 0.5	BH1_0.5D	Field_D	<0.1	<0.2	<0.3	<0.5		<20	<20	<50	<50	<100	<100	<100	<20	43	56	52	151	<0.5	<0.5	<0.5	<0.5
GHD_BH1	0.5 - 0.5	BH1_0.5ID	Interlab_D	<0.5	<0.5	<0.5		<0.2	<10	<10	<50	<50	<100	<100	<50	<10	<50	<100	<100	<50	<0.5	<0.5	<0.5	<0.5
GHD_BH1	21.05 - 21.05	BH1_21.05	Normal																					
GHD_BH2	0.1 - 0.1	BH2_0.1	Normal	<0.1	<0.2	<0.3	<0.5		<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5
GHD_BH2	0.5 - 0.5	BH2_0.5	Normal	<0.1	<0.2	<0.3	<0.5		<20	<20	<50	<50	<100	<100	<100	<20	35	<50	<50	<50	<0.5	<0.5	<0.5	<0.5

#1 Develop site specific based on CEC, pH, clay content, state and traffic volume #2 To obtain F1 subtract the sum of BTEX concentrations from the C6 - C10 fraction. #3 Errata 30 April 2014 - Naphthalene should not be subtracted from >C10-C16 (as there is no separa #4 Separate management limits for BTEX & naphthalene are not available hence should not be subtra

							PAHs														
	Benzo(a) pyrene	Benzo[b+j]fluoranthene	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Naphthalene	Fluorene	Indeno(1,2,3- c,d)pyrene	Naphthalene-PAH	Phenanthrene	Pyrene	PAHs (Sum of total) - Lab calc	Total 8 PAHs (as BaP TEQ)(zero LOR) - Lab Calc	Total 8 PAHs (as BaP TEQ)(haif LOR) - Lab Calc	Total 8 PAHs (as BaP TEQ)(full LOR) - Lab Calc	1,1-dichloroethane	1,2,3-trichlorobenzene	1,2,3-trichloropropane	1,2-dibromoethane
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
NEPM 2013 EIL-Urban Residential- Public Open Space																					
0-2m								170			170										
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil																					
0-2m	0.7																				
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil																					

Location Code	Depth	Field ID	Sample Type																					
		TRIP BLANK	Trip_B																				1	
GHD_BH1	0.2 - 0.2	BH1_0.2	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5		<0.5	<0.5
GHD_BH1	0.5 - 0.5	BH1_0.5	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5		<0.5	<0.5
GHD_BH1	0.5 - 0.5	BH1_0.5D	Field_D	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5		<0.5	<0.5
GHD_BH1	0.5 - 0.5	BH1_0.5ID	Interlab_D	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5
GHD_BH1	21.05 - 21.05	BH1_21.05	Normal																		<0.5		<0.5	<0.5
GHD_BH2	0.1 - 0.1	BH2_0.1	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5		<0.5	<0.5
GHD_BH2	0.5 - 0.5	BH2_0.5	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5		<0.5	<0.5

#1 Develop site specific based on CEC, pH, clay content, state and traffic volume #2 To obtain F1 subtract the sum of BTEX concentrations from the C6 - C10 fraction. #3 Errata 30 April 2014 - Naphthalene should not be subtracted from >C10-C16 (as there is no separa #4 Separate management limits for BTEX & naphthalene are not available hence should not be subtra

						VC	DCs										Halog	enated			
	1,3-dichlorobenzene	Bromodichloromethane	Bromoform	Chlorodibromomethane	Chloroethane	cis-1,3-dichloropropene	cis-1,4-Dichloro-2- butene	Dibromomethane	lodomethane	Pentachloroethane	Trichloroethene	Tetrachloroethene	trans-1,3- dichloropropene	trans-1,2- dichloroethene	trans-1,4-Dichloro-2- butene	Trichlorofluoromethane	Bromomethane	Dichlorodifluoromethan e	Arochlor 1016	Arochlor 1221	Arochlor 1232
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.5	0.5	0.5	0.5	5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	5	0.5	0.1	0.5
NEPM 2013 EIL-Urban Residential- Public Open Space																					
0-2m																					
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil																					
0-2m																					
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil																					

Location Code	Depth	Field ID	Sample Type																				
		TRIP BLANK	Trip_B																				
GHD_BH1	0.2 - 0.2	BH1_0.2	Normal	<0.5	<0.5	<0.5	<0.5		<0.5	<0.	.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5				
GHD_BH1	0.5 - 0.5	BH1_0.5	Normal	<0.5	<0.5	<0.5	<0.5		<0.5	<0.	.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5				1
GHD_BH1	0.5 - 0.5	BH1_0.5D	Field_D	<0.5	<0.5	<0.5	<0.5		<0.5	<0.	.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5				1
GHD_BH1	0.5 - 0.5	BH1_0.5ID	Interlab_D	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5 <0.	.5	<0.5 <0	5 < 0.5	<0.5	<0.5	<0.5	<0.5	<5	<5	<5			
GHD_BH1	21.05 - 21.05	BH1_21.05	Normal	<0.5	<0.5	<0.5	<0.5		<0.5	<0.	.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5				1
GHD_BH2	0.1 - 0.1	BH2_0.1	Normal	<0.5	<0.5	<0.5	<0.5		<0.5	<0.	.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5		<0.5	<0.1	<0.5
GHD_BH2	0.5 - 0.5	BH2_0.5	Normal	<0.5	<0.5	<0.5	<0.5		<0.5	<0.	.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	< 0.5		<0.5	<0.1	<0.5

#1 Develop site specific based on CEC, pH, clay content, state and traffic volume #2 To obtain F1 subtract the sum of BTEX concentrations from the C6 - C10 fraction. #3 Errata 30 April 2014 - Naphthalene should not be subtracted from >C10-C16 (as there is no separa #4 Separate management limits for BTEX & naphthalene are not available hence should not be subtra

	PC	Bs																Chlori	nated Hydroca	arbons	
	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	PCBs (Total)	Chlorinated hydrocarbons EPAVic	Other chlorinated hydrocarbons (Total)	1,1,1,2- tetrachloroethane	1,1,1-trichloroethane	1,1,2,2- tetrachloroethane	1,1,2-trichloroethane	1,1-dichloroethene	1,1-dichloropropene	1,2,4-trichlorobenzene	1,2-dibromo-3- chloropropane	1,2-dichlorobenzene	1,2-dichloroethane	1,2-dichloropropane	1,3-dichloropropane	1,4-dichlorobenzene	2,2-dichloropropane
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
NEPM 2013 EIL-Urban Residential- Public Open Space																					
0-2m																					
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil																					
0-2m																					
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil																					

Location Code	Depth	Field ID	Sample Type																					
		TRIP BLANK	Trip_B																					
GHD_BH1	0.2 - 0.2	BH1_0.2	Normal						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	<0.5	<0.5	<0.5	<0.5	
GHD_BH1	0.5 - 0.5	BH1_0.5	Normal						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	<0.5	<0.5	<0.5	<0.5	
GHD_BH1	0.5 - 0.5	BH1_0.5D	Field_D						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	<0.5	<0.5	<0.5	<0.5	
GHD_BH1	0.5 - 0.5	BH1_0.5ID	Interlab_D								<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD_BH1	21.05 - 21.05	BH1_21.05	Normal						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	<0.5	<0.5	<0.5	<0.5	
GHD_BH2	0.1 - 0.1	BH2_0.1	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	<0.5	<0.5	<0.5	<0.5	
GHD_BH2	0.5 - 0.5	BH2_0.5	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	<0.5	<0.5	<0.5	<0.5	

#1 Develop site specific based on CEC, pH, clay content, state and traffic volume #2 To obtain F1 subtract the sum of BTEX concentrations from the C6 - C10 fraction. #3 Errata 30 April 2014 - Naphthalene should not be subtracted from >C10-C16 (as there is no separa #4 Separate management limits for BTEX & naphthalene are not available hence should not be subtra

	2-chlorotoluene	4-chlorotoluene	Bromobenzene	Carbon tetrachloride	Chlorobenzene	Chloroform	Chloromethane	cis-1,2-dichloroethene	Methylene chloride	Hexachlorobutadiene	Vinyl chloride
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
NEPM 2013 EIL-Urban Residential- Public Open Space	I										
0-2m	,										
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil											
0-2m											
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil											

Location Code	Depth	Field ID	Sample Type											
		TRIP BLANK	Trip_B											
GHD_BH1	0.2 - 0.2	BH1_0.2	Normal				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5
GHD_BH1	0.5 - 0.5	BH1_0.5	Normal				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5
GHD_BH1	0.5 - 0.5	BH1_0.5D	Field_D				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5
GHD_BH1	0.5 - 0.5	BH1_0.5ID	Interlab_D	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5		<0.5	<5
GHD_BH1	21.05 - 21.05	BH1_21.05	Normal				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5
GHD_BH2	0.1 - 0.1	BH2_0.1	Normal				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5
GHD_BH2	0.5 - 0.5	BH2_0.5	Normal				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5

#1 Develop site specific based on CEC, pH, clay content, state and traffic volume #2 To obtain F1 subtract the sum of BTEX concentrations from the C6 - C10 fraction. #3 Errata 30 April 2014 - Naphthalene should not be subtracted from >C10-C16 (as there is no separa #4 Separate management limits for BTEX & naphthalene are not available hence should not be subtra

	Inorg	anics	Asbestos								Metals								
	Moisture (%)	Moisture Content (%)	Asbestos Reported Result	Arsenic	Beryllium	Boron	Cadmium	Chromlum (III+VI)	Cobatt	Copper	Iron	Lead	Manganese	Mercury		NICKEI	Selenium	Zinc	Benzene
	%	%	Comment	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/kg
EQL	1	1	Asbestos Detected	2	1	10	0.4	2	2	5	20	5	5	0.1	2	0.05	2	5	0.1
CRC CARE 2011 Soil Direct Contact HSL-B Residential (High Density)																			140
NEPM 2013 Table 1A(1) HIL A Res				100 ^{#1}	60	4,500	20	100 ^{#2}	100	6,000		300 ^{#3}	3,800	40#4	400		200	7,400	
NEPM 2013 Table 1A(3) HSL A/B Res Soil for Vapour Intrusion, Sand																			
0-1m																			0.5

Location Code	Depth	Date	Field ID	Sample Type																	
		4/12/2018	TRIP BLANK	Trip_B																	<0.1
GHD_BH1	0.2 - 0.2	5/12/2018	BH1_0.2	Normal	16	1	13	<2	<10	<0.4	16	<5	32	17,000	200	98	0.2	7.4	<2	160	<0.1
GHD_BH1	0.5 - 0.5	5/12/2018	BH1_0.5	Normal	20		4.4	<2	<10	<0.4	11	<5	15	4,100	17	<5	<0.1	<5	<2	<5	<0.1
GHD_BH1	0.5 - 0.5	5/12/2018	BH1_0.5D	Field_D	19		3.3	<2	<10	<0.4	8.4	<5	15	3,500	13	<5	<0.1	<5	<2	<5	<0.1
GHD_BH1	0.5 - 0.5	5/12/2018	BH1_0.5ID	Interlab_D	17.9		7	<1	<50	<1	10	<2	18	6,480	13	<5	<0.1	<2	<5	7	<0.2
GHD_BH1	21.05 - 21.05	5/12/2018	BH1_21.05	Normal	5.3																
GHD_BH2	0.1 - 0.1	4/12/2018	BH2_0.1	Normal	13	1	7.1	<2	<10	<0.4	24	5.6	27	31,000	100	150	0.2	19	<2	150	<0.1
GHD_BH2	0.5 - 0.5	4/12/2018	BH2_0.5	Normal	20		9.9	<2	<10	<0.4	22	<5	16	40,000	25	12	<0.1	<5	<2	12	<0.1

#1 Arsenic: HIL assumes 70% oral bioavailability. Site-specific bioavailability maybe important and should be considered where appropriate (refer Shedule B7).

#2 In the absence of a guideline value for total chromium, chromium VI value adopted

#3 Lead: HILs A,B,C based on blood lead models (IEUBK & HIL D on adult lead model for where 50% bioavailability considered. Site-specific bioavailability should be considered where appropriate.

#4 Elemental mercury: HIL does not address elemental mercury. a site specific assessment should be considered if elemental mercury is present, or suspected to be present.

#5 Total PAHs: Based on sum of 16 most common reported (WHO 98). HIL application should consider presence of carcinogenic PAHs (should meet BaP TEQ HIL) & naphthalene (should meet relevant HSL)

#6 Carcinogenic PAHs: HIL based on 8 carc. PAHs & their TEFs (rel to BaP ref Schedule 7) BaP TEQ calc by multiplying the conc of each carc. PAH in sample by its BaP TEF (ref Table 1A(1)) & summing

#7 PCBs: HIL refers to non-dioxin like PCBs only. Where PCB source is known, or suspected at a site, a site-specific assessment of exposure to all PCBs (inc dioxin like PCBs) should be undertaken

#8 To obtain F1 subtract the sum of BTEX concentrations from the C6 - C10 fraction.

#9 To obtain F2 subtract naphthalene from the >C10 - C16 fraction.

			BTE	EXN					-	TR	H - NEPM 20	13		
	Toluene	Ethylbenzene	Xylene (o)	Xylene (m & p)	Xylene Total	Naphthalene (BTEXN)	BTEX (Sum of Total) - Lab Calc	F1 (C6-C10 minus BTEX)	C6-C10 Fraction	F2 (>C10-C16 minus Naphthalene)	>C10-C16 Fraction	F3 (>C16-C34 Fraction)	F4 (>C34-C40 Fraction)	
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	m
EQL	0.1	0.1	0.1	0.2	0.3	0.5	0.2	10	10	50	50	100	100	1
CRC CARE 2011 Soil Direct Contact HSL-B Residential (High Density)	21,000	5,900			17,000	2,200		5,600		4,200		5,800	8,100	1
NEPM 2013 Table 1A(1) HIL A Res														
NEPM 2013 Table 1A(3) HSL A/B Res Soil for Vapour Intrusion, Sand														
0-1m	160	55			40	3		45 ^{#8}		110 #9				1

Location Code	Depth	Date	Field ID	Sample Type																		
		4/12/2018	TRIP BLANK	Trip_B	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20						<20				
GHD_BH1	0.2 - 0.2	5/12/2018	BH1_0.2	Normal	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100	<100	<20	39	56	<50	95
GHD_BH1	0.5 - 0.5	5/12/2018	BH1_0.5	Normal	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50
GHD_BH1	0.5 - 0.5	5/12/2018	BH1_0.5D	Field_D	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100	<100	<20	43	56	52	151
GHD_BH1	0.5 - 0.5	5/12/2018	BH1_0.5ID	Interlab_D	<0.5	<0.5	<0.5	<0.5	<0.5		<0.2 <10	<10	<50	<50	<100	<100	<50	<10	<50	<100	<100	<50
GHD_BH1	21.05 - 21.05	5/12/2018	BH1_21.05	Normal																		
GHD_BH2	0.1 - 0.1	4/12/2018	BH2_0.1	Normal	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50
GHD_BH2	0.5 - 0.5	4/12/2018	BH2_0.5	Normal	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100	<100	<20	35	<50	<50	<50

#1 Arsenic: HIL assumes 70% oral bioavailability. Site-specific bioavailability maybe important and should be considered where #2 In the absence of a guideline value for total chromium, chromium VI value adopted

#3 Lead: HILs A,B,C based on blood lead models (IEUBK & HIL D on adult lead model for where 50% bioavailability considered #4 Elemental mercury: HIL does not address elemental mercury. a site specific assessment should be considered if elemental n

#5 Total PAHs: Based on sum of 16 most common reported (WHO 98). HIL application should consider presence of carcinogen

#6 Carcinogenic PAHs: HIL based on 8 carc. PAHs & their TEFs (rel to BaP ref Schedule 7) BaP TEQ calc by multiplying the co

#7 PCBs: HIL refers to non-dioxin like PCBs only. Where PCB source is known, or suspected at a site, a site-specific assessme

#8 To obtain F1 subtract the sum of BTEX concentrations from the C6 - C10 fraction.

#9 To obtain F2 subtract naphthalene from the >C10 - C16 fraction.

		TR	H - NEPM 19	99	
>C10-C40 (Sum of Total)	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 (Sum of Total)
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
50	10	20	50	50	50

											PAHs		
	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo[b+]]fluoranthene	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Naphthalene	Fluorene
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
CRC CARE 2011 Soil Direct Contact HSL-B Residential (High Density)												2,200	
NEPM 2013 Table 1A(1) HIL A Res													
NEPM 2013 Table 1A(3) HSL A/B Res Soil for Vapour Intrusion, Sand													
0-1m												3	

Location Code	Depth	Date	Field ID	Sample Type																			
		4/12/2018	TRIP BLANK	Trip_B																			
GHD_BH1	0.2 - 0.2	5/12/2018	BH1_0.2	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD_BH1	0.5 - 0.5	5/12/2018	BH1_0.5	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD_BH1	0.5 - 0.5	5/12/2018	BH1_0.5D	Field_D	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD_BH1	0.5 - 0.5	5/12/2018	BH1_0.5ID	Interlab_D	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5
GHD_BH1	21.05 - 21.05	5/12/2018	BH1_21.05	Normal																			
GHD_BH2	0.1 - 0.1	4/12/2018	BH2_0.1	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD_BH2	0.5 - 0.5	4/12/2018	BH2_0.5	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

#1 Arsenic: HIL assumes 70% oral bioavailability. Site-specific bioavailability maybe important and should be considered where #2 In the absence of a guideline value for total chromium, chromium VI value adopted

#3 Lead: HILs A,B,C based on blood lead models (IEUBK & HIL D on adult lead model for where 50% bioavailability considered #4 Elemental mercury: HIL does not address elemental mercury. a site specific assessment should be considered if elemental n

#5 Total PAHs: Based on sum of 16 most common reported (WHO 98). HIL application should consider presence of carcinogen

#6 Carcinogenic PAHs: HIL based on 8 carc. PAHs & their TEFs (rel to BaP ref Schedule 7) BaP TEQ calc by multiplying the co

#7 PCBs: HIL refers to non-dioxin like PCBs only. Where PCB source is known, or suspected at a site, a site-specific assessme

#8 To obtain F1 subtract the sum of BTEX concentrations from the C6 - C10 fraction.

#9 To obtain F2 subtract naphthalene from the >C10 - C16 fraction.

Indeno(1,2,3-c,d)pyrene	Naphthalene-PAH	Phenanthrene	Pyrene	PAHs (Sum of total) - Lab calc	Total 8 PAHs (as BaP TEQ)(zero LOR) - Lab Calc
			· · · · / · · ·		
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	тg/кg 0.5	mg/kg 0.5	0.5
				0.5	0.5
	0.5				
	0.5			0.5	0.5

												vo	Cs						
	Total 8 PAHs (as BaP TEQ)(haif LOR) - Lab Calc	Total 8 PAHs (as BaP TEQ)(full LOR) - Lab Calc	1,1-dichloroethane	1,2,3-trichlorobenzene	1,2,3-trichloropropane	1,2-dibromoethane	1,3-dichlorobenzene	Bromodichloromethane	Bromoform	Chlorodibromomethane	Chloroethane	cis-1,3-dichloropropene	cis-1,4-Dichloro-2-butene	Dibromomethane	lodomethane	Pentachloroethane	Trichloroethene	Tetrachloroethene	trans-1,3-dichloropropene
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
CRC CARE 2011 Soil Direct Contact HSL-B Residential (High Density)																			1
NEPM 2013 Table 1A(1) HIL A Res	3 ^{#6}	3 ^{#6}																	
NEPM 2013 Table 1A(3) HSL A/B Res Soil for Vapour Intrusion, Sand																			
0-1m																			

Location Code	Depth	Date	Field ID	Sample Type																		
		4/12/2018	TRIP BLANK	Trip_B																	1	
GHD_BH1	0.2 - 0.2	5/12/2018	BH1_0.2	Normal	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5		<0.5	<0.5		<0.5	<0.5	<0.5
GHD_BH1	0.5 - 0.5	5/12/2018	BH1_0.5	Normal	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5		<0.5	<0.5		<0.5	<0.5	<0.5
GHD_BH1	0.5 - 0.5	5/12/2018	BH1_0.5D	Field_D	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5		<0.5	<0.5		<0.5	<0.5	<0.5
GHD_BH1	0.5 - 0.5	5/12/2018	BH1_0.5ID	Interlab_D	0.6	1.2	<0.5	<0.5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD_BH1	21.05 - 21.05	5/12/2018	BH1_21.05	Normal			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5		<0.5	<0.5		<0.5	<0.5	<0.5
GHD_BH2	0.1 - 0.1	4/12/2018	BH2_0.1	Normal	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5		<0.5	<0.5		<0.5	<0.5	<0.5
GHD_BH2	0.5 - 0.5	4/12/2018	BH2_0.5	Normal	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5		<0.5	<0.5		<0.5	<0.5	<0.5

#1 Arsenic: HIL assumes 70% oral bioavailability. Site-specific bioavailability maybe important and should be considered where #2 In the absence of a guideline value for total chromium, chromium VI value adopted

#3 Lead: HILs A,B,C based on blood lead models (IEUBK & HIL D on adult lead model for where 50% bioavailability considered #4 Elemental mercury: HIL does not address elemental mercury. a site specific assessment should be considered if elemental n

#5 Total PAHs: Based on sum of 16 most common reported (WHO 98). HIL application should consider presence of carcinogen

#6 Carcinogenic PAHs: HIL based on 8 carc. PAHs & their TEFs (rel to BaP ref Schedule 7) BaP TEQ calc by multiplying the co

#7 PCBs: HIL refers to non-dioxin like PCBs only. Where PCB source is known, or suspected at a site, a site-specific assessme

#8 To obtain F1 subtract the sum of BTEX concentrations from the C6 - C10 fraction. #9 To obtain F2 subtract naphthalene from the >C10 - C16 fraction.

				Haloge	enated				PC	Bs									
	trans-1,2-dichloroethene	trans-1,4-Dichloro-2-butene	Trichlorofluoromethane	Bromomethane	Dichlorodifluoromethane	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	PCBs (Total)	Chlorinated hydrocarbons EPAVic	Other chlorinated hydrocarbons (Total)	1,1,1,2-tetrachloroethane	1,1,1-trichloroethane	1,1,2,2-tetrachloroethane	1,1,2-trichloroethane
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.5	0.5	0.5	0.5	5	0.5	0.1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
CRC CARE 2011 Soil Direct Contact HSL-B Residential (High Density)																			
NEPM 2013 Table 1A(1) HIL A Res													1 ^{#7}						
NEPM 2013 Table 1A(3) HSL A/B Res Soil for Vapour Intrusion, Sand																			
0-1m																			

Location Code	Depth	Date	Field ID	Sample Type																			
		4/12/2018	TRIP BLANK	Trip_B																			
GHD_BH1	0.2 - 0.2	5/12/2018	BH1_0.2	Normal	<0.5		<0.5	<0.5										<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD_BH1	0.5 - 0.5	5/12/2018	BH1_0.5	Normal	<0.5		<0.5	<0.5										<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD_BH1	0.5 - 0.5	5/12/2018	BH1_0.5D	Field_D	<0.5		<0.5	<0.5										<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD_BH1	0.5 - 0.5	5/12/2018	BH1_0.5ID	Interlab_D	<0.5	<0.5	<5	<5	<5											<0.5	<0.5	<0.5	<0.5
GHD_BH1	21.05 - 21.05	5/12/2018	BH1_21.05	Normal	<0.5		<0.5	<0.5										<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD_BH2	0.1 - 0.1	4/12/2018	BH2_0.1	Normal	<0.5		<0.5	<0.5		<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD_BH2	0.5 - 0.5	4/12/2018	BH2_0.5	Normal	<0.5		<0.5	<0.5		<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

#1 Arsenic: HIL assumes 70% oral bioavailability. Site-specific bioavailability maybe important and should be considered where #2 In the absence of a guideline value for total chromium, chromium VI value adopted

#3 Lead: HILs A,B,C based on blood lead models (IEUBK & HIL D on adult lead model for where 50% bioavailability considered #4 Elemental mercury: HIL does not address elemental mercury. a site specific assessment should be considered if elemental n

#5 Total PAHs: Based on sum of 16 most common reported (WHO 98). HIL application should consider presence of carcinogen

#6 Carcinogenic PAHs: HIL based on 8 carc. PAHs & their TEFs (rel to BaP ref Schedule 7) BaP TEQ calc by multiplying the co

#7 PCBs: HIL refers to non-dioxin like PCBs only. Where PCB source is known, or suspected at a site, a site-specific assessme

#8 To obtain F1 subtract the sum of BTEX concentrations from the C6 - C10 fraction.

#9 To obtain F2 subtract naphthalene from the >C10 - C16 fraction.

							Chlorin	ated Hydroca	irbons					
	1,1-dichloroethene	1,1-dichloropropene	1,2,4-trichlorobenzene	1,2-dibromo-3-chloropropane	1,2-dichlorobenzene	1,2-dichloroethane	1,2-dichloropropane	1,3-dichloropropane	1,4-dichlorobenzene	2,2-dichloropropane	2-chlorotoluene	4-chlorotoluene	Bromobenzene	
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	г
EQL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
CRC CARE 2011 Soil Direct Contact HSL-B Residential (High Density)														
NEPM 2013 Table 1A(1) HIL A Res														
NEPM 2013 Table 1A(3) HSL A/B Res Soli for Vapour Intrusion, Sand														
0-1m														

Location Code	Depth	Date	Field ID	Sample Type																			
		4/12/2018	TRIP BLANK	Trip_B																			
GHD_BH1	0.2 - 0.2	5/12/2018	BH1_0.2	Normal	<0.5				<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD_BH1	0.5 - 0.5	5/12/2018	BH1_0.5	Normal	<0.5				<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD_BH1	0.5 - 0.5	5/12/2018	BH1_0.5D	Field_D	<0.5				<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD_BH1	0.5 - 0.5	5/12/2018	BH1_0.5ID	Interlab_D	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	
GHD_BH1	21.05 - 21.05	5/12/2018	BH1_21.05	Normal	<0.5				<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD_BH2	0.1 - 0.1	4/12/2018	BH2_0.1	Normal	<0.5				<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5
GHD_BH2	0.5 - 0.5	4/12/2018	BH2_0.5	Normal	<0.5				<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

#1 Arsenic: HIL assumes 70% oral bioavailability. Site-specific bioavailability maybe important and should be considered where #2 In the absence of a guideline value for total chromium, chromium VI value adopted

#3 Lead: HILs A,B,C based on blood lead models (IEUBK & HIL D on adult lead model for where 50% bioavailability considered #4 Elemental mercury: HIL does not address elemental mercury. a site specific assessment should be considered if elemental n

#5 Total PAHs: Based on sum of 16 most common reported (WHO 98). HIL application should consider presence of carcinogen

#6 Carcinogenic PAHs: HIL based on 8 carc. PAHs & their TEFs (rel to BaP ref Schedule 7) BaP TEQ calc by multiplying the co

#7 PCBs: HIL refers to non-dioxin like PCBs only. Where PCB source is known, or suspected at a site, a site-specific assessme

#8 To obtain F1 subtract the sum of BTEX concentrations from the C6 - C10 fraction.

#9 To obtain F2 subtract naphthalene from the >C10 - C16 fraction.

Carbon tetrachloride	Chlorobenzene	Chloroform	Chloromethane	cis-1,2-dichloroethene	Methylene chloride
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
0.5	0.5	0.5	0.5	0.5	0.5

	Hexachlorobutadiene	Vinyl chloride
	mg/kg	mg/kg
EQL	0.5	0.5
CRC CARE 2011 Soil Direct Contact HSL-B Residential (High Density)		
NEPM 2013 Table 1A(1) HIL A Res		
NEPM 2013 Table 1A(3) HSL A/B Res Soil for Vapour Intrusion, Sand		
0-1m		

Location Code	Depth	Date	Field ID	Sample Type		
		4/12/2018	TRIP BLANK	Trip_B		
GHD_BH1	0.2 - 0.2	5/12/2018	BH1_0.2	Normal		<0.5
GHD_BH1	0.5 - 0.5	5/12/2018	BH1_0.5	Normal		<0.5
GHD_BH1	0.5 - 0.5	5/12/2018	BH1_0.5D	Field_D		<0.5
GHD_BH1	0.5 - 0.5	5/12/2018	BH1_0.5ID	Interlab_D	<0.5	<5
GHD_BH1	21.05 - 21.05	5/12/2018	BH1_21.05	Normal		<0.5
GHD_BH2	0.1 - 0.1	4/12/2018	BH2_0.1	Normal		<0.5
GHD_BH2	0.5 - 0.5	4/12/2018	BH2_0.5	Normal		<0.5

#1 Arsenic: HIL assumes 70% oral bioavailability. Site-specific bioavailability maybe important and should be considered where #2 In the absence of a guideline value for total chromium, chromium VI value adopted

#3 Lead: HILs A,B,C based on blood lead models (IEUBK & HIL D on adult lead model for where 50% bioavailability considered #4 Elemental mercury: HIL does not address elemental mercury. a site specific assessment should be considered if elemental n #5 Total PAHs: Based on sum of 16 most common reported (WHO 98). HIL application should consider presence of carcinogen

#6 Carcinogenic PAHs: HIL based on 8 carc. PAHs & their TEFs (rel to BaP ref Schedule 7) BaP TEQ calc by multiplying the co

#7 PCBs: HIL refers to non-dioxin like PCBs only. Where PCB source is known, or suspected at a site, a site-specific assessme

#8 To obtain F1 subtract the sum of BTEX concentrations from the C6 - C10 fraction.

#9 To obtain F2 subtract naphthalene from the >C10 - C16 fraction.

#10 Not limiting: Derived soil HSL exceeds soil saturation concentration

	Inorg	janics	Asbestos								Metals										
	Moisture (%)	Moisture Content (%)	Asbestos Reported Result	Arsenic	Beryllium	Boron	Cadmium	Chromium (III+VI)	Cobalt	Copper	Iron	Lead	Manganese	Mercury		Nickel	Selenium	Zinc	Benzene	Toluene	Ethylbenzene
	%	%	Comment	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	1	1	Asbesots Detected	2	1	10	0.4	2	2	5	20	5	5	0.1	2	0.05	2	5	0.1	0.1	0.1
NSW EPA (2014) Special Waste (Asbestos)																					
NSW EPA (2014) General Solid Waste CT1 (No Leaching)				100	20		20	100				100		4	40		20		10	288	600
NSW EPA (2014) Restricted Solid Waste CT2 (No Leaching)				400	80		80	400				400		16	160		80		40	1,152	2,400
Location Code Depth Field ID Sample Type																					
TRIP BLANK Trip_B																			<0.1	<0.1	<0.1

		TRIP BLANK	Trip_B																		<0.1	<0.1	<0.1
GHD_BH1	0.2 - 0.2	BH1_0.2	Normal		16	1	13	<2	<10	<0.4	16	<5	32	17,000	200	98	0.2	7.4	<2	160	<0.1	<0.1	<0.1
GHD_BH1	0.5 - 0.5	BH1_0.5	Normal		20		4.4	<2	<10	<0.4	11	<5	15	4,100	17	<5	<0.1	<5	<2	<5	<0.1	<0.1	<0.1
GHD_BH1	0.5 - 0.5	BH1_0.5D	Field_D		19		3.3	<2	<10	<0.4	8.4	<5	15	3,500	13	<5	<0.1	<5	<2	<5	<0.1	<0.1	<0.1
GHD_BH1	0.5 - 0.5	BH1_0.5ID	Interlab_D	17.9			7	<1	<50	<1	10	<2	18	6,480	13	<5	<0.1	<2	<5	7	<0.2	<0.5	<0.5
GHD_BH1	21.05 - 21.05	BH1_21.05	Normal		5.3																		
GHD_BH2	0.1 - 0.1	BH2_0.1	Normal		13	1	7.1	<2	<10	<0.4	24	5.6	27	31,000	100	150	0.2	19	<2	150	<0.1	<0.1	<0.1
GHD_BH2	0.5 - 0.5	BH2_0.5	Normal		20		9.9	<2	<10	<0.4	22	<5	16	40,000	25	12	<0.1	<5	<2	12	<0.1	<0.1	<0.1

	BT	EXN						TF	RH - NEPM 20	013				TF	RH - NEPM 1	999					
	Xylene (o)	Xylene (m & p)	Xylene Total	Naphthalene (BTEXN)	BTEX (Sum of Total) - Lab Calc	F1 (C6-C10 minus BTEX)	C6-C10 Fraction	F2 (>C10-C16 minus Naphthalene)	>C10-C16 Fraction	F3 (>C16-C34 Fraction)	F4 (>C34-C40 Fraction)	>C10-C40 (Sum of Total)	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 (Sum of Total)	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.1	0.2	0.3	0.5	0.2	10	10	50	50	100	100	50	10	20	50	50	50	0.5	0.5	0.5	0.5
NSW EPA (2014) Special Waste (Asbestos)	1 7																				
NSW EPA (2014) General Solid Waste CT1 (No Leaching)			1,000										650 ^{#1}				10,000 ^{#1}				
NSW EPA (2014) Restricted Solid Waste CT2 (No Leaching)			4,000		1								2,600#1		1		40,000 *1				

Location Code	Depun	FIEID	Sample Type																					
		TRIP BLANK	Trip_B	<0.1	<0.2	<0.3	<0.5		<20	<20						<20							, , , , , , , , , , , , , , , , , , ,	
GHD_BH1	0.2 - 0.2	BH1_0.2	Normal	<0.1	<0.2	<0.3	<0.5		<20	<20	<50	<50	<100	<100	<100	<20	39	56	<50	95	<0.5	<0.5	<0.5	<0.5
GHD_BH1	0.5 - 0.5	BH1_0.5	Normal	<0.1	<0.2	<0.3	<0.5		<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5
GHD_BH1	0.5 - 0.5	BH1_0.5D	Field_D	<0.1	<0.2	<0.3	<0.5		<20	<20	<50	<50	<100	<100	<100	<20	43	56	52	151	<0.5	<0.5	<0.5	<0.5
GHD_BH1	0.5 - 0.5	BH1_0.5ID	Interlab_D	<0.5	<0.5	<0.5		<0.2	<10	<10	<50	<50	<100	<100	<50	<10	<50	<100	<100	<50	<0.5	<0.5	<0.5	<0.5
GHD_BH1	21.05 - 21.05	BH1_21.05	Normal																				, , , , , , , , , , , , , , , , , , ,	
GHD_BH2	0.1 - 0.1	BH2_0.1	Normal	<0.1	<0.2	<0.3	<0.5		<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5
GHD_BH2	0.5 - 0.5	BH2_0.5	Normal	<0.1	<0.2	<0.3	<0.5		<20	<20	<50	<50	<100	<100	<100	<20	35	<50	<50	<50	<0.5	<0.5	<0.5	<0.5

							PAHs														
	Benzo(a) pyrene	Benzo[b+j]fluoranthene	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Naphthalene	Fluorene	Indeno(1,2,3- c,d)pyrene	Naphthalene-PAH	Phenanthrene	Pyrene	PAHs (Sum of total) - Lab calc	Total 8 PAHs (as BaP TEQ)(zero LOR) - Lab Calc	Total 8 PAHs (as BaP TEQ)(haif LOR) - Lab Calc	Total 8 PAHs (as BaP TEQ)(full LOR) - Lab Calc	1,1-dichloroethane	1,2,3-trichlorobenzene	1,2,3-trichloropropane	1,2-dibromoethane
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
NSW EPA (2014) Special Waste (Asbestos)																					1
NSW EPA (2014) General Solid Waste CT1 (No Leaching)	0.8													200							
NSW EPA (2014) Restricted Solid Waste CT2 (No Leaching)	3.2													800							
		•		•	•	•	•			•						•	•				

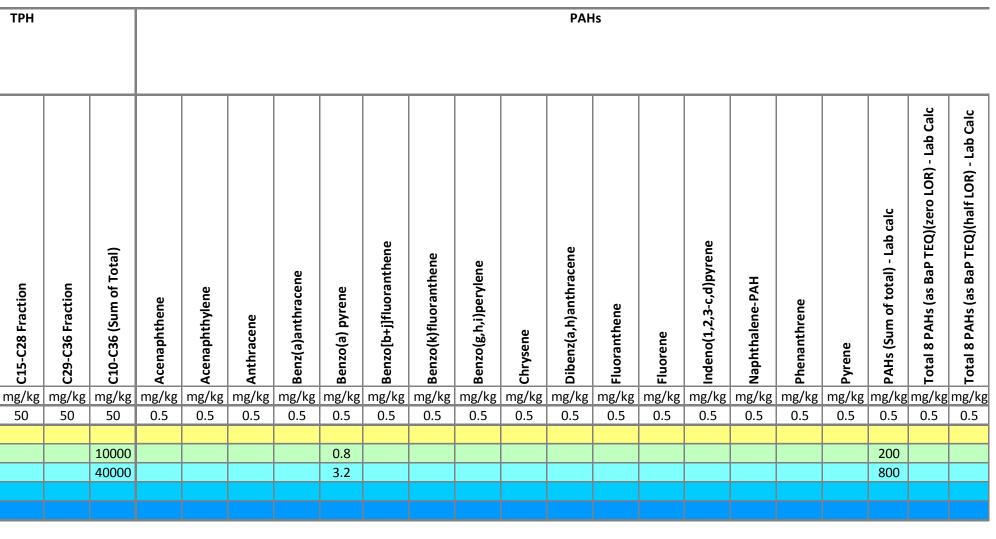
Location Code	Depth	Field ID	Sample Type																					
		TRIP BLANK	Trip_B																					
GHD_BH1	0.2 - 0.2	BH1_0.2	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5		<0.5	<0.5
GHD_BH1	0.5 - 0.5	BH1_0.5	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5		<0.5	<0.5
GHD_BH1	0.5 - 0.5	BH1_0.5D	Field_D	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5		<0.5	<0.5
GHD_BH1	0.5 - 0.5	BH1_0.5ID	Interlab_D	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5
GHD_BH1	21.05 - 21.05	BH1_21.05	Normal																		<0.5		<0.5	<0.5
GHD_BH2	0.1 - 0.1	BH2_0.1	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5		<0.5	<0.5
GHD_BH2	0.5 - 0.5	BH2_0.5	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5		<0.5	<0.5

									VC)Cs										Halog	genated			
				1,3-dichlorobenzene	Bromodichloromethane	Bromoform	Chlorodibromomethane	Chloroethane	cis-1,3-dichloropropene	cis-1,4-Dichloro-2- butene	Dibromomethane	lodomethane	Pentachloroethane	Trichloroethene	Tetrachloroethene	trans-1,3- dichloropropene	trans-1,2- dichloroethene	trans-1,4-Dichloro-2- butene	Trichlorofluoromethane	Bromomethane	Dichlorodifluoromethan e	Arochlor 1016	Arochlor 1221	Arochlor 1232
				mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL				0.5	0.5	0.5	0.5	5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	5	0.5	0.1	0.5
NSW EPA (2014) Spe	ecial Waste (Asbestos)																							
NSW EPA (2014) Ger	neral Solid Waste CT1 (I	No Leaching)												10	14								1	
	stricted Solid Waste CT2													40	56								<u> </u>	
Location Code	Depth	Field ID	Sample Type																					
		TRIP BLANK	Trip_B																					
GHD_BH1	0.2 - 0.2	BH1_0.2	Normal	<0.5	<0.5	<0.5	<0.5	1	<0.5		<0.5	<0.5		<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	1		1	
GHD_BH1	0.5 - 0.5	BH1_0.5	Normal	<0.5	< 0.5	<0.5	<0.5		<0.5		<0.5	<0.5		<0.5	<0.5	<0.5	<0.5		<0.5	<0.5				

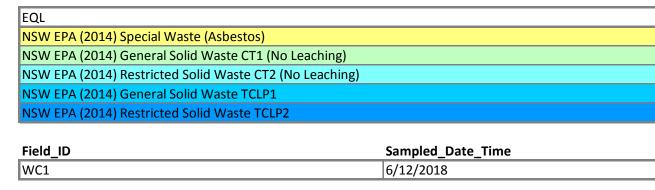
Depth	Field ID	Sample Type																				
	TRIP BLANK	Trip_B																				
0.2 - 0.2	BH1_0.2	Normal	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5		<0.5	<0.5		1		
0.5 - 0.5	BH1_0.5	Normal	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5		<0.5	<0.5				
0.5 - 0.5	BH1_0.5D	Field_D	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5		<0.5	<0.5				
0.5 - 0.5	BH1_0.5ID	Interlab_D	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<5	<5			
21.05 - 21.05	BH1_21.05	Normal	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5		<0.5	<0.5		1		
0.1 - 0.1	BH2_0.1	Normal	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5		<0.5	<0.5		<0.5	<0.1	<0.5
0.5 - 0.5	BH2_0.5	Normal	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5		<0.5	<0.5		<0.5	<0.1	<0.5
	0.2 - 0.2 0.5 - 0.5 0.5 - 0.5 0.5 - 0.5 21.05 - 21.05 0.1 - 0.1	TRIP BLANK 0.2 - 0.2 BH1_0.2 0.5 - 0.5 BH1_0.5 0.5 - 0.5 BH1_0.5D 0.5 - 0.5 BH1_0.5D 0.5 - 0.5 BH1_0.5ID 21.05 - 21.05 BH1_21.05 0.1 - 0.1 BH2_0.1	TRIP BLANK Trip_B 0.2 - 0.2 BH1_0.2 Normal 0.5 - 0.5 BH1_0.5 Normal 0.5 - 0.5 BH1_0.5D Field_D 0.5 - 0.5 BH1_0.5ID Interlab_D 21.05 - 21.05 BH1_21.05 Normal 0.1 - 0.1 BH2_0.1 Normal	TRIP BLANK Trip_B 0.2 - 0.2 BH1_0.2 Normal <0.5	TRIP BLANK Trip_B 0.2 - 0.2 BH1_0.2 Normal <0.5	TRIP BLANK Trip_B 0.2 - 0.2 BH1_0.2 Normal <0.5	TRIP BLANK Trip_B Control Contro Contro <thcontrol< th=""> <th< td=""><td>TRIP BLANK Trip_B 0.2 - 0.2 BH1_0.2 Normal <0.5</td> <0.5</th<></thcontrol<>	TRIP BLANK Trip_B 0.2 - 0.2 BH1_0.2 Normal <0.5	TRIP BLANK Trip_B Constraint Constraint<	TRIP BLANK Trip_B Image: Constraint of the state of	TRIP BLANK Trip_B Image: Constraint of the state of	TRIP BLANK Trip_B Image: Constraint of the state of	TRIP BLANK Trip_B Image: Constraint of the state of	TRIP BLANK Trip_B Image: Constraint of the state of	TRIP BLANK Trip_B Image: Constraint of the state of	TRIP BLANK Trip_B Image: Constraint of the state of	TRIP BLANK Trip_B Image: Constraint of the state of	TRIP BLANK Trip_B Image Image	TRIP BLANK Trip_B Image: Constraint of the burger of the	TRIP BLANK Trip_B Image Image	TRIP BLANK Trip_B Image: Constraint of the burger of the	TRP BLANK Trip_B Image: Constraint of the burg of the bur

	P	CBs																Chlor	rinated Hydroc	carbons	
	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	PCBs (Total)	Chlorinated hydrocarbons EPAVic	Other chlorinated hydrocarbons (Total)	1,1,1,2- tetrachloroethane	1,1,1-trichloroethane	1,1,2,2- tetrachloroethane	1,1,2-trichloroethane	1,1-dichloroethene	1,1-dichloropropene	1,2,4-trichlorobenzene	1,2-dibromo-3- chloropropane	1,2-dichlorobenzene	1,2-dichloroethane	1,2-dichloropropane	1,3-dichloropropane	1,4-dichlorobenzene	2,2-dichloropropane
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
NSW EPA (2014) Special Waste (Asbestos)																					
NSW EPA (2014) General Solid Waste CT1 (No Leaching)					50			200	600	26	24	14				86	10			150	
NSW EPA (2014) Restricted Solid Waste CT2 (No Leaching)					50	1		800	2,400	104	96	56				344	40		1	600	1

Dopui		oumpic Type																					
	TRIP BLANK	Trip_B																					
0.2 - 0.2	BH1_0.2	Normal						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	<0.5	<0.5	<0.5	<0.5	
0.5 - 0.5	BH1_0.5	Normal						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	<0.5	<0.5	<0.5	<0.5	
0.5 - 0.5	BH1_0.5D	Field_D						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	<0.5	<0.5	<0.5	<0.5	
0.5 - 0.5	BH1_0.5ID	Interlab_D								<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
21.05 - 21.05	BH1_21.05	Normal						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	<0.5	<0.5	<0.5	<0.5	
0.1 - 0.1	BH2_0.1	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	<0.5	<0.5	<0.5	<0.5	
0.5 - 0.5	BH2_0.5	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	<0.5	<0.5	<0.5	<0.5	
	0.2 - 0.2 0.5 - 0.5 0.5 - 0.5 0.5 - 0.5 21.05 - 21.05 0.1 - 0.1	TRIP BLANK 0.2 - 0.2 BH1_0.2 0.5 - 0.5 BH1_0.5 0.5 - 0.5 BH1_0.5D 0.1 - 0.1 BH2_0.1	TRIP BLANK Trip_B 0.2 - 0.2 BH1_0.2 Normal 0.5 - 0.5 BH1_0.5 Normal 0.5 - 0.5 BH1_0.5D Field_D 0.5 - 0.5 BH1_0.5ID Interlab_D 21.05 - 21.05 BH1_21.05 Normal 0.1 - 0.1 BH2_0.1 Normal	TRIP BLANK Trip_B 0.2 - 0.2 BH1_0.2 Normal 0.5 - 0.5 BH1_0.5 Normal 0.5 - 0.5 BH1_0.5D Field_D 0.5 - 0.5 BH1_0.5D Field_D 0.5 - 0.5 BH1_0.5ID Interlab_D 21.05 - 21.05 BH1_21.05 Normal 0.1 - 0.1 BH2_0.1 Normal	TRIP BLANK Trip_B 0.2 - 0.2 BH1_0.2 Normal 0.5 - 0.5 BH1_0.5 Normal 0.5 - 0.5 BH1_0.5D Field_D 0.5 - 0.5 BH1_0.5D Field_D 0.5 - 0.5 BH1_0.5ID Interlab_D 21.05 - 21.05 BH1_21.05 Normal 0.1 - 0.1 BH2_0.1 Normal	TRIP BLANK Trip_B Image: Constraint of the state of	TRIP BLANK Trip_B Image: Constraint of the state of	TRIP BLANK Trip_B Image: Constraint of the state of	TRIP BLANK Trip_B Image: Constraint of the state of	TRIP BLANK Trip_B Image: Constraint of the state of	TRIP BLANK Trip_B Image: Constraint of the system Image: Cons	TRIP BLANK Trip_B Image: Constraint of the state of	TRIP BLANK Trip_B Image: Constraint of the state of	TRIP BLANK Trip_B Image: Constraint of the state of	TRIP BLANK Trip_B Image: Constraint of the state of	TRP BLANK Trip_B Image Image	TRIP BLANK Trip_B Image Image	TRP BLANK Trip_B Image: Constraint of the burger of the b	TRIP BLANK Trip_B Image: Constraint of the state of	TRP BLANK Trip_B Image Image	TRIP BLANK Trip_B I	TRIP BLANK Trip_B Image: Constraint of the burg straint of the burg s	TRIP BLANK Trip_BC Image: Constraint of the state of

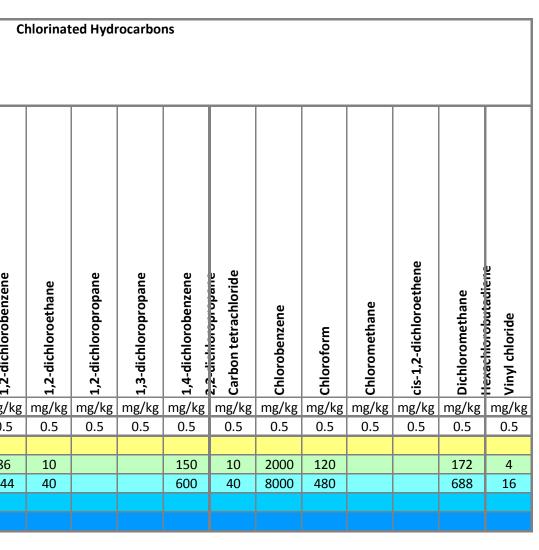

	2-chlorotoluene	4-chlorotoluene	Bromobenzene	Carbon tetrachloride	Chlorobenzene	Chloroform	Chloromethane	cis-1,2-dichloroethene	Methylene chloride	Hexachlorobutadiene	Vinyl chloride
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
NSW EPA (2014) Special Waste (Asbestos)											
NSW EPA (2014) General Solid Waste CT1 (No Leaching)				10	2,000	120			172		4
NSW EPA (2014) Restricted Solid Waste CT2 (No Leaching)				40	8,000	480			688		16

Location Code	Depth	Field ID	Sample Type											
		TRIP BLANK	Trip_B											
GHD_BH1	0.2 - 0.2	BH1_0.2	Normal				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5
GHD_BH1	0.5 - 0.5	BH1_0.5	Normal				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5
GHD_BH1	0.5 - 0.5	BH1_0.5D	Field_D				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5
GHD_BH1	0.5 - 0.5	BH1_0.5ID	Interlab_D	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5		<0.5	<5
GHD_BH1	21.05 - 21.05	BH1_21.05	Normal				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5
GHD_BH2	0.1 - 0.1	BH2_0.1	Normal				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5
GHD_BH2	0.5 - 0.5	BH2_0.5	Normal				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5

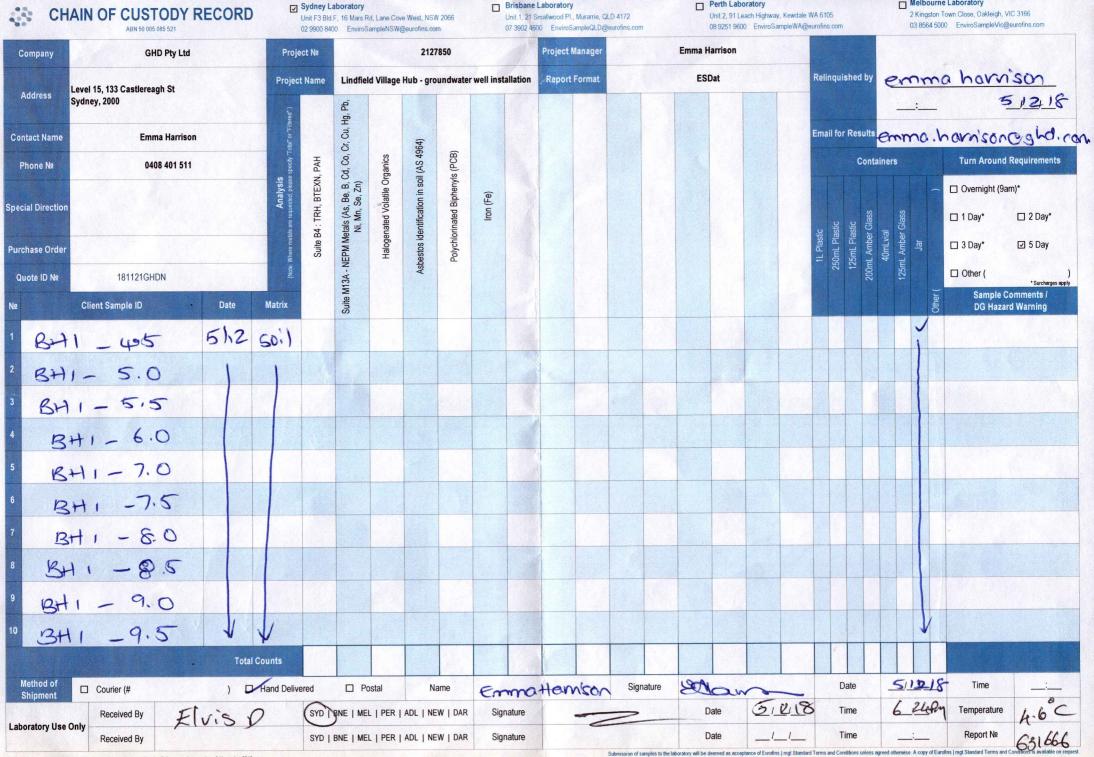

Appendix E, Attachment 2 Table 1 Waste classification results

				Metals										BTE	XN					TRH	- NEPM	2013					Т
	Chromium (III+VI)	Cobalt	Copper	Iron	Lead	Manganese	Mercury	Nickel	Nickel (TCLP)	Selenium	Zinc	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene Total	Naphthalene (BTEXN)	F1 (C6-C10 minus BTEX)	C6-C10 Fraction	F2 (>C10-C16 minus Naphthalene)	>C10-C16 Fraction	F3 (>C16-C34 Fraction)	F4 (>C34-C40 Fraction)	>C10-C40 (Sum of Total)	C6-C9 Fraction	C10-C14 Fraction	
/kg	mg/kg			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg
4	2	2	5	20	5	5	0.1	2		2	5	0.1	0.1	0.1	0.2	0.3	0.5	10	10	50	50	100	100	50	10	20	5
0	100				100		4	40		20		10	288	600		1000									650		
0	400				400		16	160		80		40	1152	2400		4000									2600		
									2																		
									8																		

 No asbestos detected
 10
 <2</th>
 <10</th>
 <0.4</th>
 28
 18
 67
 18,000
 40
 690
 <0.1</th>
 43
 0.14
 2.9
 110
 <0.1</th>
 <th



Attachment 1 Table 1 Waste classification results


									VOCs								Halogenated								(
																	Hydrocarbons								
																		<u> </u>							
	Calc																								
	Lab (Ē						
																			(Total)						
	BaP TEQ)(full LOR)																	Vic	L) su						
	full													e				EPA	rbo						
	Ő					e a		e	ne					ylen	e	e		suc	оса	ne		ne			
	P TE		ane		a	han		han) yle					Lop	ther	han		arbo	ydr	etha	e	etha	e		a
		ane	op	ane	zen	net		net	brol	ы			ane	rop	roe	net		Loc	h be		thar	Jroe	thar	ene	zen
	s (as	1-dichloroethane	rop	,2-dibromoethane	ben	Dror		u u u	1,3-dichloropropylene	thai	e	ene	ethe	l lo	hlo	oror	ane	hyd	chlorinated hydrocarbons	chle	1,1-trichloroethane	,2,2-tetrachloroethane	roet	ethe	ben
	AHs	oro	olh	E E	oro	chlo	E	pro	ichl	eu	han	eth	oro	dic	-dic	flue	eth	ted	lori	etra	old	etra	old	oro	oro
	8	ichl	-tric	ibro	ichl	lodi	lofo	odi	p-c	omo	net	lord	chl	-1, E, L	1,2	lord	E E	ina	r ch	,2-t	-tric	,2-t	-tric	ichl	ichl
	Total 8 PAHs (as	,1-d	1,2,3-trichloropropane	,2-d	1,3-dichlorobenzene	Bromodichloromethane	Bromoform	Chlorodibromomethane	cis-1,	Dibromomethane	lodomethane	Trichloroethene	Tetrachloroethene	trans-1,3-dichloropropylene	trans-1, 2-dichloroethene	Trichlorofluoromethane	Bromomethane	Chlorinated hydrocarbons EPAVic	Other	1,1,1,2-tetrachloroethane	, L,	,1,2	1,1,2-trichloroethane	1,1-dichloroethene	1,2-dichlorobenzene
	⊢ mg/kg	re mg/kg	ref mg/kg	r mg/kg		mg/kg			mg/kg	 mg/kg		⊢ mg/kg		<u> </u>			≏ mg/kg		O mg/kg	ref mg/kg	r mø/kø	ren mg/kg		ਚ mg/kg	स mg/k
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
												10	14							200	600	26	24	14	86
												40	56							800	2400	104	96	56	344
_	1.2	-0 F	<0 F	<0 F	-0 F		-0 F	-0 F	-0 F	-0 F	<0 F	-0 F	<0 F	<0 F	-0 F	-0 F	-0 F	<0 F	<0 F	-0 F	-0 F	-0 F	-0 F	-0 F	<u>د</u> م د
	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Ku-ring-gai Council Lindfield Village Hub Project # 2127850

 $\label{eq:product} \textbf{Appendix} \ \textbf{F} - Laboratory \ certificates$

🛟 CH	AIN OF CUSTODY F	RECORD			F, 16 Mars F		e West, NSW @eurofins.com			Unit 1, 21 S		, Murarrie, QL ampleQLD@e		Ur		r atory ich Highway, ł EnviroSamj					2 Kingstor	ne Laboratory Town Close, Oakleigh, 000 EnviroSampleVic		ŕ
Company	GHD Pty Ltd		Proje	ect Nº			21278	850			Project N	lanager		Emma Har	rrison									
Address	Level 15, 133 Castlereagh St		Projec	t Name	Lindfiel	d Village	Hub - grou	undwater	r well inst	allation	Report	Format		ESDa	ıt		R	elinquish	ed by	er	m	a harn'		_
Auress	Sydney, 2000		ered")		Hg, Pb,															-	_:		512+1	
Contact Name	Emma Harrison		otal" or "Filt		Cr, Cu, H		64)								deg		Er	nail for R	esults	emi	ma,	hamicor	egh	dican
Phone №	0408 401 511		s specify 'T	I, PAH	Cd, Co,	rganics	il (AS 49	s (PCB)											Conta	iners		Turn Around	l Requiremen	nts
Special Directior			Analysis	Suite B4 : TRH, BTEXN, PAH	Be, B, e, Zn	Halogenated Volatile Organics	Asbestos identification in soil (AS 4964)	Polychlorinated Biphenyls (PCB)	Iron (Fe)						-	\$		stic	Glass	Glass		□ Overnight (9 □ 1 Day*	am)* □ 2 Day*	
Purchase Order Quote ID №	181121GHDN		(Note: Where met	Suite E	113A - NEPM Metals (As, I Ni, Mn, S	Haloge	Asbestos id	Polychlo									11 Placti	250mL Plasti 175ml Plasti	200mL Amber G	40mLvial 125mL Amber Glass	Jar	□ 3 Day* □ Other (. 5 Day ∙Surcharg)
Nº	Client Sample ID	Date	Matrix		Suite M13A																Other (Sample DG Haza	Comments /	
BH	1-0.2	5/12	soil	1	1.	~	/		~												~	asbe	stos.	*
and Balanthanian	+1-0.4	1	1	NOP	,	J.				T											1			
	+1 - 0.5			\checkmark	1	\checkmark			1															
4 BH																								
	1 - 1.5																							
	1-2.0																							
	1 - 2.5																							
	11-3.0																							
																							e.	
10 B+	11-3.5	1	V																					
		Total C	ounts	2	2	2	1		2		1.													
Method of Shipment	Courier (#) 🖻	Hand Delive	ered	D Po	stal	Nan	ne	Em	ma	Harr	isan	Signature	(St	ber	5	~	Date)	5	1218	Time		_
Laboratory Use	Only Received By	this 1	P	SYD	BNE MEL	PER	ADL NEW		ALC: NO.	ature	<	C	2	Date		512	18	Time	,	6	248	Y Temperature	4.00	2
	Received By			SYD E	BNE MEL	PER	ADL NEW	/ DAR	Sign	ature				Date		/	Sale 1	Time			<u>.</u>	Report №	63166	6

CHAI	N OF CUSTODY R ABN 50 005 085 521	Sec. Steel		100 Enviros	SampleNSW	ve West, NSW 2066 @eurofins.com	07 3902	1600 EnviroSampleQLD@eurofins.com	1	08 9251 9600 EnviroSamp	leWA@eurofins.com	03 8564 50	000 EnviroSampleVic@e	eurofins.com
mpany	GHD Pty Ltd	Proj	ect №			2127850		Project Manager		Emma Harrison				
	vel 15, 133 Castlereagh St	Projec	ct Name	Lindfie	ld Village	Hub - groundw	ater well installatior	Report Format		ESDat	Relinquished by	Emm	attants	
Syc	dney, 2000	lenod")	3-1	Hg, Pb,	1.						and the second s	<u>:</u>		1218
act Name	Emma Harrison	Total" or "Fi		Cr, Cu,		964)					Email for Results	emma.	hamisone	eghd,
one №	0408 401 511	is specify	CN, PAH	Cd, Co,	Organics	oil (AS 4 vis (PCB					Conta	ainers	Turn Around R	
Direction		Analys tuested plea	Suite B4 : TRH, BTEXN, PAH	Suite M13A - NEPM Metals (As, Be, B, Ni, Mn, Se, Zn)	Halogenated Volatile Organics	Asbestos identification in soil (AS 4964) Polivchlorinated Binhenvis (PCB)	Iron (Fe)						Overnight (9am	
		ielais are re-	e B4 : TR	Vetals (P Ni, Mr	genated	identifica	<u>8</u>				istic Plastic Plastic Der Glass	vial ber Glass		□ 2 Day*
ise Order		te Where m	Suite	NEPM	Halo	Sbestos	•				1L Plastic 250mL Plastic 125mL Plastic 200mL Amber Gla	40mLvial 25mL Amber (Jar	□ 3 Day*	☑ 5 Day
te ID №	181121GHDN	(No		• M13A -		A					200	12t	Other (*Surcharges
(Client Sample ID	Date Matrix		Suite								Othe	DG Hazard	
BH	1-10-0	5/12 soil												
	- 10.5													
BHI	- 10.0								144				ale i s	
Rox.	_ 11.5													
-	R2	Noter		~	1		1							
0,,,	1_0.5D	soil		1	1		1							
		soil		-	~		/							<u>KANANANAN</u>
BHI	_ 0.5T	501										V.		
			No.	14										
					1.54								1	
		Total Counts	3	3	8		3							
nod of coment	Courier (#) D Hand Delive	0	D Po		Name		attamisan sign	ature	med 33	Date	51218		6
tory Use Only	Received By E	Visl	SYDD	BNE MEL	L PER	ADL NEW D	AR Signature			Date 5/12	Time	p_44p	Temperature	4.60

CHAIN OF CUSTODY RECORD			Sydney Laboratory Unit F3 Bld.F, 16 Mars Rd, Lane Cove West, NSW 2066 02 9900 8400 EnviroSampleNSW@eurofins.com						Brisbane Laboratory Unit 1, 21 Smallwood PL, Murarrie, QLD 4172 07 3902 4600 EnviroSampleQLD@eurofins.com			Perth Laboratory Unit 2, 91 Leach Highway, Kewdale WA 6105 08 9251 9600 EnviroSampleWA@eurofins.com			Melbourne Laboratory 2 Kingston Town Close, Oakleigh, VIC 3166 03 8564 5000 EnviroSampleVic@eurofins.com	
Company	GHD Pty Ltd		Project № 2127850					Project Manager			Emma Harrison					
Address	Level 15, 133 Castlereagh St Sydney, 2000		Project Name	Lindfield Village Hub - groundwater well installation					allation	Report Format		ESDat		Relinquished by	Emma Harvison	
Address			ared")	Hg, Pb,		il (AS 4964)	Polychlorinated Biphenyls (PCB)	Iron (Fe)							51218	
Contact Name	Emma Harrison 0408 401 511		otal" or "Filt	Cr, Cu, H										Email for Results	emmo . havison @ ghd: (an	
Phone №			s specify T	Ś	ganics									Contain	ers	Turn Around Requirements Overnight (9am)* 1 Day* 2 Day*
Special Directio			Analysis nee malats are requested, please specify Suite B4 : TRH, BTEXN, PAH	A - NEPM Metals (As, Be, B, Cd, I Ni, Mn, Se, Zn)	Halogenated Volatile Organics	Asbestos identification in soil (AS 4964)								1L Plastic 250mL Plastic 125mL Plastic 200mL Amber Glass		
Purchase Orde			Where me		Haloge	bestos ic									25mL Amber Glass	□ 3 Day*
Quote ID №	181121GHDN		(Note	M13A - N		Ast									125n (Other () *Surcharges apply
Nº	Client Sample ID	Date Ma	itrix	Suite N											Other	Sample Comments / DG Hazard Warning
1	BH1-20.23	5/12 (1	ore										- X -			
2	BH1-20.23 BH1-29.05	-112 (ore					1.24								
3	0H1-24.03	5110				i din										
4																
5																
6																
7																
8																
9																
10																
		Total Count														
Method of	Courier (#		d Delivered		stal	Na	ime d			tanvison	Signature	Eth.		Date	51218	Time
Shipment Courier (#) Har Laboratory Use Only Received By Flvis D				~					nature	m mon	oignaturo	Date	5.112.18		6218m	
Laboratory Us	a sea la sue	SYD BNE MEL PER ADL NEW DAR Signature								Date	_!!	Time		Report № 6 31.466		

To: Subject: Nibha Vaidya; COC NSW RE: Eurofins | mgt Sample Receipt Advice - Report 631666 : Site LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTALLATION (2127850)

From: Emma.Harrison@ghd.com [mailto:Emma.Harrison@ghd.com]
Sent: Friday, 7 December 2018 9:56 AM
To: Nibha Vaidya
Cc: Joanna Curry
Subject: FW: Eurofins | mgt Sample Receipt Advice - Report 631666 : Site LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTALLATION (2127850)

EXTERNAL EMAIL*

Hi Nibha – Please see below.

From: Emma Harrison
Sent: Friday, 7 December 2018 9:54 AM
To: 'EnviroSampleNSW@eurofins.com' <<u>EnviroSampleNSW@eurofins.com</u>>
Cc: Jo Curry <<u>Joanna.Curry@ghd.com</u>>
Subject: RE: Eurofins | mgt Sample Receipt Advice - Report 631666 : Site LINDFIELD VILLAGE HUB - GROUNDWATER
WELL INSTALLATION (2127850)

Hi Nibha,

Would you please analyse BH1_21.05 for halogenated volatile organics?

I sent in a separate COC for the sample named BH1_0.5ID to be sent to ALS (a copy is attached here), but, based on the sample receipt, I believe you may have also sent sample BH1_0.5T to ALS. Can you please confirm what sample(s) you have sent to ALS? We only want one of them analysed by ALS and the other one should be put on hold. It does not matter which sample gets analysed.

Also, would you please include Joanna Curry on the COC and results emails? Her email address is above.

Many thanks, Emma Emma Harrison Senior Environmental Geologist

GHD

Proudly employee owned

T: +61 2 9239 7910 | V: 217910 | M: +61 408 401 511 | E: <u>emma.harrison@ghd.com</u> Level 15 133 Castlereagh Street Sydney NSW 2000 Australia | <u>www.ghd.com</u>

WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION

Please consider our environment before printing this email

To: Subject: Nibha Vaidya; COC NSW RE: Eurofins | mgt Sample Receipt Advice - Report 631666 : Site LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTALLATION (2127850)

From: Emma.Harrison@ghd.com [mailto:Emma.Harrison@ghd.com]
Sent: Friday, 7 December 2018 4:22 PM
To: Nibha Vaidya
Cc: Joanna Curry; Asim Khan
Subject: Re: Eurofins | mgt Sample Receipt Advice - Report 631666 : Site LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTALLATION (2127850)

EXTERNAL EMAIL*

Hi Nibha

As discussed below, please hold BH1_0.5T. We don't need this analysed.

Thanks Emma

Emma Harrison 0408 401 511

On Dec 7, 2018, at 1:52 PM, Nibha Vaidya <<u>NibhaVaidya@eurofins.com</u>> wrote:

Hi Emma,

Just to follow up on this, I can confirm that we have sent sample BH1_0.5ID only to ALS. Sample BH1_0.5T is with Eurofins – logged as S18-De06863.

Kind Regards,

Nibha Vaidya Phone:+61299008415 Mobile:+61499900805 Email:<u>NibhaVaidya@eurofins.com</u>

From: Nibha Vaidya Sent: Friday, 7 December 2018 12:21 PM To: 'Emma.Harrison@ghd.com' Cc: Joanna Curry; Asim Khan Subject: RE: Eurofins | mgt Sample Receipt Advice - Report 631666 : Site LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTALLATION (2127850)

Hi Emma,

Shall do. I will get back to you re BH1_0.5T.

Kind Regards,

GHD Pty Ltd NSW

Melbourne Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Hors State Cove Mest NSW 2067 Phone : +61 2 9900 8400 NATA # 1261 Site # 20794

web : www.eurofins.com.au

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com

Sample Receipt Advice

- I · · · ·	
Contact name:	Emma Harrison
Project name:	LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTALLATION
Project ID:	2127850
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Dec 5, 2018 6:24 PM
Eurofins mgt reference:	631666

Sample information

Company name:

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 4.6 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- \times Some samples have been subcontracted.

Custody Seals intact (if used). Notes^{N/A}

Triplicate sample sent to ALS for analysis. Additional sample BH1 6.0(BAG+JAR) received and placed on hold.

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Emma Harrison - emma.harrison@ghd.com.

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

38 Years of Environmental Analysis & Experience

	🔅 eur	ofins	mgt		ABN- 50 005 (e.mail : Enviro web : www.eur	Sales@		s.com	2· 0 P N	leibourn -5 Kings Dakleigh hone : - IATA # ² ite # 12	ston To VIC 31 +61 3 8 1261	wn Close 66 564 5000 1271	Sydney Brisbane Perth Unit F3, Building F 1/21 Smallwood Place 2/91 Leach Highway 16 Mars Road Murarrie QLD 4172 Kewdale WA 6105 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone : +61 8 9251 9600 Phone : +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 NATA # 1261 Site # 18217 Site # 23736
Pi	Company Name: GHD Pty Ltd NSW Address: Level 15, 133 Castlereagh Street Sydney NSW 2000 Project Name: LINDFIELD VILLAGE HUB - GROUNDWATER WELL INST Project ID: 2127850				Order No.: Report #: Phone: Fax: TALLATION							Contact Name: Emma Harrison	
	Sample Detail				Asbestos - AS4964	ногр	Iron	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)	Eurofins mgt Analytical Services Manager : Nibha Vaidya	
Mel	bourne Laborate	ory - NATA Site	# 1254 & 142	271									
-		- NATA Site # 1				Х	Х	Х	Х	х	Х	Х	
Bris	bane Laborator	y - NATA Site #	20794										
Per	th Laboratory - I	NATA Site # 237	'36										
Ext	ernal Laboratory	· · · · · · · · · · · · · · · · · · ·											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	BH1_0.2	Dec 05, 2018		Soil	S18-De06823	х		х	х	x	х	х	
2	BH1_0.5	Dec 05, 2018		Soil	S18-De06824			х	х	х	х	х	
3	R2	Dec 05, 2018		Water	S18-De06825			х	х		х	х	
4	BH1_0.5D	Dec 05, 2018		Soil	S18-De06826			х	х	х	х	х	
5	BH1_0.4	Dec 05, 2018		Soil	S18-De06827		Х						
6	BH1_1.0	Dec 05, 2018		Soil	S18-De06828		х						
7	BH1_1.5	Dec 05, 2018		Soil	S18-De06829		х						
8	BH1_2.0	Dec 05, 2018		Soil	S18-De06830		х						
9	BH1_2.5	Dec 05, 2018		Soil	S18-De06831		Х						

	🔅 eur	ofins	mgt		ABN– 50 005 (e.mail : Enviro web : www.eur	Sales@e	eurofins m.au	s.com	2 C P N	felbourr -5 Kings Dakleigh Phone : - IATA # ⁻ Site # 12	ston To VIC 31 +61 3 8 1261	wn Close 66 564 5000 4271	Sydney Brisbane Perth Unit F3, Building F 1/21 Smallwood Place 2/91 Leach Highway 16 Mars Road Murarrie QLD 4172 Kewdale WA 6105 0 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone : +61 8 9251 9600 Phone : +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 NATA # 1261 Site # 18217 Site # 23736
A o	Company Name: GHD Pty Ltd NSW Address: Level 15, 133 Castlereagh Street Sydney NSW 2000 Project Name: LINDFIELD VILLAGE HUB - GROUNDWATER WELL INST				Order No. Report #: Phone: Fax: INSTALLATION								
	Project ID: 2127850					Asbestos -	HOLD	Iron	Haloge	Moisture Set	Eurofir	NEPM Cd, Cc	Eurofins mgt Analytical Services Manager : Nibha Vaidya
	Sample Detail				tos - AS4964			Halogenated Volatile Organics	Ire Set	Eurofins mgt Suite B4	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)		
Mel	bourne Laborate	ory - NATA Site #	1254 & 14271										
		- NATA Site # 182				х	Х	Х	Х	Х	Х	x	
		y - NATA Site # 20											
		NATA Site # 23736										$\left \right $	
10	BH1_3.0	Dec 05, 2018	Sc		S18-De06832		X X					$\left - \right $	
11 12	BH1_3.5 BH1_4.0	Dec 05, 2018 Dec 05, 2018	So		S18-De06833 S18-De06834		X X					$\left \right $	
13	BH1_4.0 BH1_4.5	Dec 05, 2018	Sc		S18-De06835		X						
14	BH1_5.0	Dec 05, 2018	Sc		S18-De06836		X						
15	BH1_5.5	Dec 05, 2018	Sc		S18-De06837		Х						
16	 BH1_6.0	Dec 05, 2018	Sc		S18-De06838		Х						
17	BH1_7.0	Dec 05, 2018	Sc	oil	S18-De06839		Х						
18	BH1_7.5	Dec 05, 2018	So	bil	S18-De06840		Х						
19	BH1_8.0	Dec 05, 2018	So	oil	S18-De06841		Х						
20	BH1_8.5	Dec 05, 2018	Sc	oil	S18-De06842		х						
21	BH1_9.0	Dec 05, 2018	Sc	oil	S18-De06843		х						

🔅 eur		ıgt	ABN– 50 005 e.mail : Enviro web : www.eur	Sales@	eurofins	.com	2 0 P N	Melbourr 2-5 Kings Dakleigh Phone : - NATA # ⁻ Site # 12	ston To VIC 31 +61 3 8 1261	wn Close 66 564 5000 4271	Sydney Brisbane Perth Unit F3, Building F 1/21 Smallwood Place 2/91 Leach Highway 16 Mars Road Murarie QLD 4172 Kewdale WA 6105 Lane Cove West NSW 2066 Phone : +61 2 9900 8400 Phone : +61 8 9251 9600 NATA # 1261 Site # 18217 NATA # 1261 Site # 23736
Company Name: GHD Pty Ltd NSW Address: Level 15, 133 Castlereagh Street Sydney NSW 2000			Order No.: Report #: Phone: Fax:						9 7100		
Project Name: Project ID:	LINDFIELD VILLAG 2127850	E HUB - GROUNDV	ATER WELL INST	FALLA	TION						Eurofins mgt Analytical Services Manager : Nibha Vaidya
Sample Detail			Asbestos - AS4964	НОГД	Iron	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)		
Melbourne Laborato	ry - NATA Site # 1254	& 14271									
Sydney Laboratory -				Х	х	Х	Х	Х	Х	Х	
	- NATA Site # 20794										
Perth Laboratory - N											
	Dec 05, 2018	Soil	S18-De06844		X						
	Dec 05, 2018	Soil	S18-De06845		X X			+		$\left \right $	
	Dec 05, 2018 Dec 05, 2018	Soil Soil	S18-De06846 S18-De06847		X						
	Dec 05, 2018	Soil	S18-De06848		X						
	Dec 05, 2018	Soil	S18-De06849		X						
	Dec 05, 2018	Soil	S18-De06863		x			1			
	Dec 05, 2018	Soil	S18-De06864		x						
	Dec 05, 2018	Soil	S18-De06865				Х	X			
Test Counts				1	25	4	5	4	4	4	

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Emma Harrison

Dec 05, 2018

Report Project name Project ID **Received Date**

631666-S LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTALLATION 2127850

Г			1		1	
Client Sample ID			BH1_0.2	BH1_0.5	BH1_0.5D	BH1_21.05
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-De06823	S18-De06824	S18-De06826	S18-De06865
Date Sampled			Dec 05, 2018	Dec 05, 2018	Dec 05, 2018	Dec 05, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ctions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	-
TRH C10-C14	20	mg/kg	39	< 20	43	-
TRH C15-C28	50	mg/kg	56	< 50	56	-
TRH C29-C36	50	mg/kg	< 50	< 50	52	-
TRH C10-36 (Total)	50	mg/kg	95	< 50	151	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	78	84	71	-
Halogenated Volatile Organics						
1.1-Dichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.1-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.1.2-Tetrachloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2.2-Tetrachloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dibromoethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.3-Trichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.4-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromodichloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromoform	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloroform	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID Sample Matrix			BH1_0.2 Soil	BH1_0.5 Soil	BH1_0.5D Soil	BH1_21.05 Soil
•			S18-De06823	S18-De06824	S18-De06826	S18-De06865
Eurofins mgt Sample No. Date Sampled			Dec 05, 2018	Dec 05, 2018	Dec 05, 2018	Dec 05, 2018
•		1.1	Dec 05, 2018	Dec 05, 2018	Dec 05, 2018	Dec 05, 2018
Test/Reference	LOR	Unit				
Halogenated Volatile Organics						
cis-1.2-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
cis-1.3-Dichloropropene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibromochloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibromomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
lodomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Methylene Chloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
trans-1.2-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
trans-1.3-Dichloropropene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Trichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Trichlorofluoromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Bromofluorobenzene (surr.)	1	%	78	84	71	84
Toluene-d8 (surr.)	<u> </u>	%	93	96	80	101
Total Recoverable Hydrocarbons - 2013 NEPM						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	-
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	-
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	-
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	101	104	108	-
p-Terphenyl-d14 (surr.)	1	%	105	110	114	-

Client Sample ID			BH1_0.2 Soil	BH1_0.5 Soil	BH1_0.5D Soil	BH1_21.05 Soil
Sample Matrix						
Eurofins mgt Sample No.			S18-De06823	S18-De06824	S18-De06826	S18-De06865
Date Sampled			Dec 05, 2018	Dec 05, 2018	Dec 05, 2018	Dec 05, 2018
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	13	4.4	3.3	-
Beryllium	2	mg/kg	< 2	< 2	< 2	-
Boron	10	mg/kg	< 10	< 10	< 10	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	-
Chromium	5	mg/kg	16	11	8.4	-
Cobalt	5	mg/kg	< 5	< 5	< 5	-
Copper	5	mg/kg	32	15	15	-
Iron	20	mg/kg	17000	4100	3500	-
Lead	5	mg/kg	200	17	13	-
Manganese	5	mg/kg	98	< 5	< 5	-
Mercury	0.1	mg/kg	0.2	< 0.1	< 0.1	-
Nickel	5	mg/kg	7.4	< 5	< 5	-
Selenium	2	mg/kg	< 2	< 2	< 2	-
Zinc	5	mg/kg	160	< 5	< 5	-
% Moisture	1	%	16	20	19	5.3

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B4			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Dec 12, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Dec 11, 2018	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 11, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 12, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Dec 12, 2018	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Halogenated Volatile Organics	Sydney	Dec 11, 2018	7 Day
- Method: E016 Volatile Halogenated Compounds (VHC)			
NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)	Sydney	Dec 11, 2018	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Heavy Metals	Sydney	Dec 11, 2018	180 Day
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Dec 07, 2018	14 Day
- Method: LTM-GEN-7080 Moisture			

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Emma Harrison

Report Project name Project ID Received Date 631666-W LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTALLATION 2127850

Project ID 2127850			
Received Date Dec 05, 2018			
Client Sample ID			R2
Sample Matrix			Water
Eurofins mgt Sample No.			S18-De06825
Date Sampled			Dec 05, 2018
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEP	M Fractions		
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-36 (Total)	0.1	mg/L	< 0.1
втех			
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	93
Halogenated Volatile Organics			
1.1-Dichloroethane	0.001	mg/L	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001
1.2-Dibromoethane	0.001	mg/L	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001
Bromodichloromethane	0.001	mg/L	< 0.001
Bromoform	0.001	mg/L	< 0.001
Bromomethane	0.001	mg/L	< 0.001
Carbon Tetrachloride	0.001	mg/L	< 0.001
Chlorobenzene	0.001	mg/L	< 0.001
Chloroform	0.005	mg/L	< 0.005
Chloromethane	0.001	mg/L	< 0.001

Client Sample ID			R2
Sample Matrix			Water
Eurofins mgt Sample No.			S18-De06825
Date Sampled			Dec 05, 2018
Test/Reference	LOR	Unit	
Halogenated Volatile Organics			
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001
Dibromomethane	0.001	mg/L	< 0.001
lodomethane	0.001	mg/L	< 0.001
Methylene Chloride	0.001	mg/L	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001
Trichloroethene	0.001	mg/L	< 0.001
Trichlorofluoromethane	0.001	mg/L	< 0.001
Vinyl chloride	0.001	mg/L	< 0.001
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005
4-Bromofluorobenzene (surr.)	1	%	93
Toluene-d8 (surr.)	1	%	100
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions		
Naphthalene ^{N02}	0.01	mg/L	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)	1	%	64
p-Terphenyl-d14 (surr.)	1	%	67

Client Sample ID Sample Matrix				R2 Water
Eurofins mgt Sample No.				S18-De06825
Date Sampled				Dec 05, 2018
Test/Reference	L	OR	Unit	
Heavy Metals				
Arsenic	0	.001	mg/L	< 0.001
Beryllium	0	.001	mg/L	< 0.001
Boron	(0.05	mg/L	< 0.05
Cadmium	0.	0002	mg/L	< 0.0002
Chromium	0	.001	mg/L	< 0.001
Cobalt	0	.001	mg/L	< 0.001
Copper	0	.001	mg/L	< 0.001
Iron	(0.05	mg/L	< 0.05
Lead	0	.001	mg/L	< 0.001
Manganese	0	.005	mg/L	< 0.005
Mercury	0.	0001	mg/L	< 0.0001
Nickel	0	.001	mg/L	< 0.001
Selenium	0	.001	mg/L	< 0.001
Zinc	0	.005	mg/L	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B4			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Dec 06, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Dec 06, 2018	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 06, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 06, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Dec 06, 2018	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Halogenated Volatile Organics	Sydney	Dec 06, 2018	7 Day
- Method: E016 Volatile Halogenated Compounds (VHC)			
NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)	Sydney	Dec 11, 2018	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Heavy Metals	Sydney	Dec 11, 2018	180 Day
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

Level 15, 133 Castlereagh Street

GHD Pty Ltd NSW

Sydney NSW 2000 mgt

Certificate of Analysis

WP90

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Report Project Name Project ID Received Date Date Reported	Emma Harrison 631666-AID LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTALLATION 2127850 Dec 05, 2018 Dec 13, 2018
Methodology: Asbestos Fibre Identification	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.
Unknown Mineral Fibres	Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity. NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.
Subsampling Soil Samples	The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed. NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.
Limit of Reporting	The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 % " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project NameLINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTALLATIONProject ID2127850Date SampledDec 05, 2018Report631666-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
BH1_0.2	18-De06823	Dec 05, 2018	Approximate Sample 94g Sample consisted of: Brown fine-grained sandy soil and rocks	Chrysotile asbestos detected in fibre cement fragments. Approximate raw weight of asbestos containing material = 11g Total estimated asbestos content in the sample = 1.3g* Total estimated asbestos concentration = 1.4% w/w*
				Organic fibre detected. No respirable fibres detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Asbestos - LTM-ASB-8020 Testing SiteExtractedHolding TimeSydneyDec 06, 2018Indefinite

	euro	ofins	mgt			ABN – e.mail : web : w	50 005 Enviro vww.eur	085 521 Sales@ ofins.co	eurofins m.au	s.com		Oakleig Phone NATA #	gston Town Close h VIC 3166 : +61 3 8564 5000	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : -61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736
	mpany Name: dress:	GHD Pty Ltd Level 15, 13 Sydney NSW 2000	NSW 3 Castlereagh	n Street			Re	der N port i ione: x:		0		6 9 710 9 719		Receive Due: Priority Contact	Dec 12, 2 5 Day	
	oject Name: oject ID:	LINDFIELD 2127850	/ILLAGE HUE	3 - GROUNDWA	ATER WELL INST	TALLA	TION							Eurofins mgt A	Analytical Services Ma	nager : Nibha Vaidya
		Sa	mple Detail			Asbestos - AS4964	HOLD	Iron	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)				
		ory - NATA Site		271												
		- NATA Site # 1				X	Х	Х	Х	Х	Х	Х				
		y - NATA Site #														
		NATA Site # 237	30				<u> </u>									
No	rnal Laboratory Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	BH1_0.2	Dec 05, 2018		Soil	S18-De06823	Х		х	Х	х	Х	х				
	BH1_0.5	Dec 05, 2018		Soil	S18-De06824			х	Х	х	х	Х				
3	R2	Dec 05, 2018		Water	S18-De06825			х	х		Х	х				
	BH1_0.5D	Dec 05, 2018		Soil	S18-De06826			х	Х	х	Х	Х				
	BH1_0.4	Dec 05, 2018		Soil	S18-De06827		х									
	BH1_1.0	Dec 05, 2018		Soil	S18-De06828		X									
7	BH1_1.5	Dec 05, 2018		Soil	S18-De06829		X									
3	BH1_2.0	Dec 05, 2018		Soil	S18-De06830	<u> </u>	X									
Э	BH1_2.5	Dec 05, 2018		Soil	S18-De06831	1	X	1		1		1				

🔅 eur	ofins	mgt		ABN – { e.mail : web : w	50 005 Enviros ww.eur	085 521 Sales@ ofins.co	eurofins m.au	s.com		Oakleig Phone NATA #	gston Town Close h VIC 3166 : +61 3 8564 5000	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736
Company Name: Address:	GHD Pty Ltd Level 15, 133 Sydney NSW 2000	NSW Castlereagh Street			Re	der N port a ione: x:		0		6 9 710 9 719		Receive Due: Priority Contact	Dec 12, 2 5 Day	
Project Name: Project ID:	LINDFIELD V 2127850	/ILLAGE HUB - GROUI	NDWATER WELL INS	ΓALLA	TION							Eurofins mgt #	Analytical Services Ma	nager : Nibha Vaidya
	Sar	nple Detail		Asbestos - AS4964	HOLD	Iron	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)				
Melbourne Laborat														
Sydney Laboratory				Х	Х	X	Х	X	Х	Х				
Brisbane Laborato														
Perth Laboratory - 10 BH1_3.0		36 Soil	S18-De06832		х									
10 BH1_3.0 11 BH1_3.5	Dec 05, 2018 Dec 05, 2018	Soil	S18-De06832		X									
12 BH1_4.0	Dec 05, 2018	Soil	S18-De06834		X									
13 BH1_4.5	Dec 05, 2018	Soil	S18-De06835		X									
14 BH1_5.0	Dec 05, 2018	Soil	S18-De06836		X									
15 BH1_5.5	Dec 05, 2018	Soil	S18-De06837		х	1		1						
	Dec 05, 2018	Soil	S18-De06838		х									
16 BH1_6.0	Dec 05, 2018	Soil	S18-De06839		х									
16 BH1_6.0 17 BH1_7.0		Soil	S18-De06840		х									
	Dec 05, 2018	001						Γ			1			
17 BH1_7.0	Dec 05, 2018 Dec 05, 2018	Soil	S18-De06841		Х									
17 BH1_7.0 18 BH1_7.5					X X									

🔅 euro		ngt		ABN – e.mail : web : w	50 005 Enviros ww.eur	085 521 Sales@e ofins.co	eurofins m.au	s.com		Oakleig Phone NATA #	gston Town Close h VIC 3166 +61 3 8564 5000	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwoo Murarrie QLD Phone : +61 7 NATA # 1261 \$	4172 3902 4600	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736
Company Name: Address:		Re	der N port # one: x:		02		6 9 710 9 719		Receive Due: Priority: Contact	:	Dec 5, 20 Dec 12, 2 5 Day Emma Ha				
Project Name:LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSProject ID:2127850												Eurofins mgt A	Analytical Se	ervices Ma	nager : Nibha Vaidya
	Asbestos - AS4964	HOLD	Iron	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)								
lelbourne Laborato	ory - NATA Site # 125	4 & 14271													
Sydney Laboratory	- NATA Site # 18217			Х	Х	Х	Х	Х	Х	Х					
Brisbane Laborator	y - NATA Site # 20794	4													
Perth Laboratory - N															
2 BH1_9.5	Dec 05, 2018	Soil	S18-De06844		Х										
23 BH1_10.0	Dec 05, 2018	Soil	S18-De06845		X										
24 BH1_10.5	Dec 05, 2018	Soil	S18-De06846		X										
25 BH1_11.0	Dec 05, 2018	Soil	S18-De06847		X										
26 BH1_11.5 27 BH1_6.5	Dec 05, 2018	Soil Soil	S18-De06848 S18-De06849		X X										
27 BH1_6.5 28 BH1_0.5T	Dec 05, 2018 Dec 05, 2018	Soil	S18-De06863		X										
29 BH1_0.31	Dec 05, 2018	Soil	S18-De06864		X										
	Dec 05, 2018	Soil	S18-De06865				Х	х							
BH1_21.05															

Internal Quality Control Review and Glossary General

1. QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

mgt

Units

% w/w: weight for weight	ght basis	grams per kilogram
Filter loading:		fibres/100 graticule areas
Reported Concentration	in:	fibres/mL
Flowrate:		L/min
Terms		
Dry	Sample is dried by heating prior to analysis	
LOR	Limit of Reporting	
COC	Chain of Custody	
SRA	Sample Receipt Advice	
ISO	International Standards Organisation	
AS	Australian Standards	
WA DOH		ia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated acommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)
NEPM	National Environment Protection (Assessment of Site Contamination	n) Measure, 2013 (as amended)
ACM	Asbestos Containing Materials. Asbestos contained within a non-ast NEPM, ACM is generally restricted to those materials that do not particle to the second state of t	bestos matrix, typically presented in bonded and/or sound condition. For the purposes of the ss a 7mm x 7mm sieve.
AF	Asbestos Fines. Asbestos containing materials, including friable, we equivalent to "non-bonded / friable".	athered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as
FA	Fibrous Asbestos. Asbestos containing materials in a friable and/or s materials that do not pass a 7mm x 7mm sieve.	severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those
Friable	Asbestos-containing materials of any size that may be broken or cru outside of the laboratory's remit to assess degree of friability.	mbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is
Trace Analysis	Analytical procedure used to detect the presence of respirable fibres	in the matrix.

Comments

Eurofins | mgt accreditation number 1261, corporate site 1254 and 14271 is currently in progress of a controlled transition to a new custom built location at 6 Monterey Road, Dandenong South, Victoria 3175. All results on this report denoted as being performed by Eurofins | mgt 2-5 Kingston Town Close, Oakleigh Victoria 3166 corporate site 1254, will have been performed on either Oakleigh or new Dandenong South site.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

CodeDescriptionN/ANot applicable

Asbestos Counter/Identifier:

Authorised by:

Sayeed Abu

Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

	🔅 eur	ofins	mgt		ABN– 50 005 e.mail : Enviro web : www.eu	Sales@	eurofins m.au	s.com	2 0 P N	lelbourn -5 Kings vakleigh hone : + ATA # ² ite # 12	ston To VIC 31 +61 3 8 1261	wn Close 66 564 5000 271	Sydney Brisbane Perth Unit F3, Building F 1/21 Smallwood Place 2/91 Leach Highway 16 Mars Road Murarrie QLD 4172 Kewdale WA 6105 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone : +61 8 9251 9600 Phone : +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 NATA # 1261 Site # 18217 Site # 23736
	Company Name: GHD Pty Ltd NSW Address: Level 15, 133 Castlereagh Street Sydney NSW 2000 Project Name: LINDFIELD VILLAGE HUB - GROUNDWATER WELL INST						Re	der N port # one: x:		0		5 9 7100 9 7199	· · · · ·
	Project Name:LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSProject ID:2127850						TION						Eurofins mgt Analytical Services Manager : Nibha Vaidya
	Sample Detail					Asbestos - AS4964	HOLD	Iron	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)	
Melt	ourne Laborate	ory - NATA Site	# 1254 & 142	271									
-		- NATA Site # 1				х	Х	х	х	х	Х	Х	
		y - NATA Site #											
Pert	h Laboratory - N	NATA Site # 237	'36										
	rnal Laboratory											\mid	
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	BH1_0.2	Dec 05, 2018		Soil	S18-De06823	Х		х	х	х	х	х	
2	BH1_0.5	Dec 05, 2018		Soil	S18-De06824			х	х	х	Х	Х	
3	R2	Dec 05, 2018		Water	S18-De06825			х	х		х	х	
4	BH1_0.5D	Dec 05, 2018		Soil	S18-De06826			х	х	х	х	х	
5	BH1_0.4	Dec 05, 2018		Soil	S18-De06827		Х						
6	BH1_1.0	Dec 05, 2018		Soil	S18-De06828		Х						
7	BH1_1.5	Dec 05, 2018		Soil	S18-De06829		Х			<u> </u>			
8	BH1_2.0	Dec 05, 2018		Soil	S18-De06830		Х						
9	BH1_2.5	Dec 05, 2018		Soil	S18-De06831		Х						

🔅 eur		ngt	ABN- 50 005 (e.mail : Enviro web : www.eu	Sales@e	eurofins m.au	.com	2 C P N	Dakleigh	ston Tov VIC 31 +61 3 8 1261	564 5000	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 2079	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 4 NATA # 1261 Site # 23736
Company Name: Address:	GHD Pty Ltd NSW Level 15, 133 Cast Sydney NSW 2000	lereagh Street			Re	der N port # one: x:		0		6 9 7100 9 7199		Due: Priority:	Dec 5, 2018 6:24 PM Dec 12, 2018 5 Day Emma Harrison
Project Name: Project ID:											Eurofin	s mgt Analytical Ser	vices Manager : Nibha Vaidya
	Sample I	Detail		Asbestos - AS4964	HOLD	Iron	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)			
Melbourne Laborate	ory - NATA Site # 125	4 & 14271											
	- NATA Site # 18217			Х	Х	Х	х	Х	Х	х			
	y - NATA Site # 20794												
Perth Laboratory - I	NATA Site # 23736												
10 BH1_3.0	Dec 05, 2018	Soil	S18-De06832		Х								
11 BH1_3.5	Dec 05, 2018	Soil	S18-De06833		Х								
12 BH1_4.0	Dec 05, 2018	Soil	S18-De06834		Х								
13 BH1_4.5	Dec 05, 2018	Soil	S18-De06835		Х								
14 BH1_5.0	Dec 05, 2018	Soil	S18-De06836		Х								
15 BH1_5.5	Dec 05, 2018	Soil	S18-De06837		Х								
16 BH1_6.0	Dec 05, 2018	Soil	S18-De06838		Х								
17 BH1_7.0	Dec 05, 2018	Soil	S18-De06839		Х								
18 BH1_7.5	Dec 05, 2018	Soil	S18-De06840		Х								
19 BH1_8.0	Dec 05, 2018	Soil	S18-De06841		Х								
20 BH1_8.5	Dec 05, 2018	Soil	S18-De06842		Х								
21 BH1_9.0	Dec 05, 2018	Soil	S18-De06843	1	Х		I	1	1	1 1			

🛟 eur		ngt	ABN– 50 005 e.mail : Enviro web : www.eur	Sales@e	eurofins m.au	s.com	2- 0 Pl N	Dakleigh	ston Tov v VIC 31 +61 3 8 1261	564 5000	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 2079-	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 4 NATA # 1261 Site # 23736
Company Name: Address:	GHD Pty Ltd NSW Level 15, 133 Cast Sydney NSW 2000				Re	der Ne port # ione: x:	#:	0		6 9 7100 9 7199		Due: Priority:	Dec 5, 2018 6:24 PM Dec 12, 2018 5 Day Emma Harrison
Project Name: Project ID:	LINDFIELD VILLA 2127850	GE HUB - GROUNDV	VATER WELL INST	[ALLA	TION						Eurofin	s mgt Analytical Ser	vices Manager : Nibha Vaidya
	Sample Detail					Iron	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)			
Melbourne Laborato	ory - NATA Site # 125	4 & 14271											
Sydney Laboratory	- NATA Site # 18217			Х	Х	Х	Х	Х	Х	Х			
Brisbane Laborator	y - NATA Site # 20794	1											
Perth Laboratory - N	ATA Site # 23736]		<u> </u>		\square				
22 BH1_9.5	Dec 05, 2018	Soil	S18-De06844		х		<u> </u>						
23 BH1_10.0	Dec 05, 2018	Soil	S18-De06845	\mid	Х	<u> </u>	 		⊢				
24 BH1_10.5	Dec 05, 2018	Soil	S18-De06846	\square	Х	<u> </u>	<u> </u>	<u> </u>	\vdash				
25 BH1_11.0	Dec 05, 2018	Soil	S18-De06847	\square	Х	<u> </u>	<u> </u>	<u> </u>	\bot				
26 BH1_11.5	Dec 05, 2018	Soil	S18-De06848		Х	\square	<u> </u>						
27 BH1_6.5	Dec 05, 2018	Soil	S18-De06849		х	\square	<u> </u>	<u> </u>	\square				
28 BH1_0.5T	Dec 05, 2018	Soil	S18-De06863		х		<u> </u>		\square				
29 BH1_20.23	Dec 05, 2018	Soil	S18-De06864		х		<u> </u>		\square				
30 BH1_21.05	Dec 05, 2018	Soil	S18-De06865				х	х					
Test Counts				1	25	4	5	4	4	4			

Internal Quality Control Review and Glossary

General

1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Terma	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	Quality Systems Manual ver 5.1 US Department of Defense
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	6				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank					
Halogenated Volatile Organics					
1.1-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.1-Dichloroethene	mg/L	< 0.001	0.001	Pass	
1.1.1-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.1.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dibromoethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.2-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.3-Trichloropropane	mg/L	< 0.001	0.001	Pass	
1.3-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.4-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
Bromodichloromethane	mg/L	< 0.001	0.001	Pass	
Bromoform	mg/L	< 0.001	0.001	Pass	
Bromomethane	mg/L	< 0.001	0.001	Pass	
Carbon Tetrachloride	mg/L	< 0.001	0.001	Pass	
Chlorobenzene	mg/L	< 0.001	0.001	Pass	
Chloroform	mg/L	< 0.005	0.005	Pass	
Chloromethane	mg/L	< 0.001	0.001	Pass	
cis-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Dibromochloromethane	mg/L	< 0.001	0.001	Pass	
Dibromomethane	mg/L	< 0.001	0.001	Pass	
lodomethane	mg/L	< 0.001	0.001	Pass	
Methylene Chloride	mg/L	< 0.001	0.001	Pass	
Tetrachloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Trichloroethene	mg/L	< 0.001	0.001	Pass	
Trichlorofluoromethane	mg/L	< 0.001	0.001	Pass	
Vinyl chloride	mg/L	< 0.001	0.001	Pass	
Method Blank	mg/L			1 400	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/L	< 0.01	0.01	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C6-C10	mg/L	< 0.02		0.02	Pass	
TRH >C10-C16	mg/L	< 0.05		0.05	Pass	
TRH >C16-C34	mg/L	< 0.1		0.1	Pass	
TRH >C34-C40	mg/L	< 0.1		0.1	Pass	
Method Blank		1	TT		1	
Polycyclic Aromatic Hydrocarbons	1					
Acenaphthene	mg/L	< 0.001		0.001	Pass	
Acenaphthylene	mg/L	< 0.001		0.001	Pass	
Anthracene	mg/L	< 0.001		0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001		0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001		0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001		0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001		0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001		0.001	Pass	
Chrysene	mg/L	< 0.001		0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001		0.001	Pass	
Fluoranthene	mg/L	< 0.001		0.001	Pass	
Fluorene	mg/L	< 0.001		0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001		0.001	Pass	
Naphthalene	mg/L	< 0.001		0.001	Pass	
Phenanthrene	mg/L	< 0.001		0.001	Pass	
Pyrene	mg/L	< 0.001		0.001	Pass	
Method Blank						
Heavy Metals						
Arsenic	mg/L	< 0.001		0.001	Pass	
Beryllium	mg/L	< 0.001		0.001	Pass	
Boron	mg/L	< 0.05		0.05	Pass	
Cadmium	mg/L	< 0.0002		0.0002	Pass	
Chromium	mg/L	< 0.001		0.001	Pass	
Cobalt	mg/L	< 0.001		0.001	Pass	
Copper	mg/L	< 0.001		0.001	Pass	
Iron	mg/L	< 0.05		0.05	Pass	
Lead	mg/L	< 0.001		0.001	Pass	
Manganese	mg/L	< 0.005		0.005	Pass	
Mercury	mg/L	< 0.0001		0.0001	Pass	
Nickel	mg/L	< 0.001		0.001	Pass	
Selenium	mg/L	< 0.001		0.001	Pass	
Zinc	mg/L	< 0.005		0.005	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	-					
TRH C6-C9	%	73		70-130	Pass	
TRH C10-C14	%	126		70-130	Pass	
LCS - % Recovery						
втех						
Benzene	%	90		70-130	Pass	
Toluene	%	89		70-130	Pass	
Ethylbenzene	%	103		70-130	Pass	
m&p-Xylenes	%	102		70-130	Pass	
o-Xylene	%	98		70-130	Pass	
Xylenes - Total	%	100		70-130	Pass	
LCS - % Recovery						
Halogenated Volatile Organics						
1.1-Dichloroethene	%	89		70-130	Pass	
1.1.1-Trichloroethane	%	93		70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
1.2-Dichlorobenzene			%	93		70-130	Pass	
1.2-Dichloroethane			%	98		70-130	Pass	
Trichloroethene			%	87		70-130	Pass	
LCS - % Recovery				1		-		
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	tions						
Naphthalene			%	103		70-130	Pass	
TRH C6-C10			%	76		70-130	Pass	
TRH >C10-C16			%	128		70-130	Pass	
LCS - % Recovery					I I	T	1	
Polycyclic Aromatic Hydrocarbo	ns							
Acenaphthylene			%	74		70-130	Pass	
Anthracene			%	86		70-130	Pass	
Benz(a)anthracene			%	82		70-130	Pass	
Benzo(a)pyrene			%	79		70-130	Pass	
Benzo(b&j)fluoranthene			%	81		70-130	Pass	
Benzo(g.h.i)perylene			%	88		70-130	Pass	
Benzo(k)fluoranthene			%	80		70-130	Pass	
Chrysene			%	81		70-130	Pass	
Dibenz(a.h)anthracene			%	87		70-130	Pass	
Fluoranthene			%	79		70-130	Pass	
Fluorene			%	75		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	88		70-130	Pass	
Naphthalene			%	72		70-130	Pass	
Phenanthrene			%	81		70-130	Pass	
Pyrene			%	80		70-130	Pass	
LCS - % Recovery				-				
Heavy Metals								
Arsenic			%	89		70-130	Pass	
Beryllium			%	113		70-130	Pass	
Boron			%	108		70-130	Pass	
Cadmium			%	88		70-130	Pass	
Chromium			%	106		70-130	Pass	
Cobalt			%	109		70-130	Pass	
Copper			%	111		70-130	Pass	
Iron			%	102		70-130	Pass	
Lead			%	110		70-130	Pass	
Manganese			%	94		70-130	Pass	
Mercury			%	101		70-130	Pass	
Nickel			%	110		70-130	Pass	
Selenium			%	84		70-130	Pass	
Zinc			%	97		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Heavy Metals	1	· · · · ·		Result 1				
Arsenic	S18-De11219	NCP	%	88		70-130	Pass	
Beryllium	S18-De11219	NCP	%	99		70-130	Pass	
Boron	S18-De11219	NCP	%	104		70-130	Pass	
Cadmium	S18-De11219	NCP	%	85		70-130	Pass	
Chromium	S18-De11219	NCP	%	106		70-130	Pass	
Cobalt	S18-De11219	NCP	%	108		70-130	Pass	
Copper	S18-De11219	NCP	%	111		70-130	Pass	
Iron	S18-De11219	NCP	%	102		70-130	Pass	
Lead	S18-De11219	NCP	%	110		70-130	Pass	
Manganese	S18-De11219	NCP	%	94		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Mercury	S18-De11219	NCP	%	124			70-130	Pass	
Nickel	S18-De11219	NCP	%	109			70-130	Pass	
Selenium	S18-De11219	NCP	%	83			70-130	Pass	
Zinc	S18-De11219	NCP	%	96			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate								-	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S18-De11224	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Beryllium	S18-De11224	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Boron	S18-De12993	NCP	mg/L	0.06	0.05	20	30%	Pass	
Cadmium	S18-De08591	NCP	mg/L	0.0007	0.0008	5.0	30%	Pass	
Chromium	S18-De11224	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cobalt	S18-De11224	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper	S18-De12993	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Iron	S18-De11224	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Lead	S18-De11224	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese	S18-De11224	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Mercury	S18-De12993	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S18-De11224	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Selenium	S18-De11224	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc	S18-De12993	NCP	mg/L	0.008	0.008	5.0	30%	Pass	

Comments

Eurofins | mgt accreditation number 1261, corporate site 1254 and 14271 is currently in progress of a controlled transition to a new custom built location at 6 Monterey Road, Dandenong South, Victoria 3175. All results on this report denoted as being performed by Eurofins | mgt 2-5 Kingston Town Close, Oakleigh Victoria 3166 corporate site 1254, will have been performed on either Oakleigh or new Dandenong South site.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Nibha Vaidya Andrew Sullivan Gabriele Cordero

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Analytical Services Manager

Senior Analyst-Metal (NSW)

Senior Analyst-Organic (NSW)

Eurofins | mg shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg the liable for consequential damages including, but not limited to, lets products, damages for dadines and to start for motion or interpretation given in this report. In no case shall Eurofins | mg the liable for consequential damages including, but not be reproduced exection to the reproduced execpt in full and report limits execpt in full and report limits execpt in full and report limits execpt in full and report.

	🔅 eur	ofins	mgt		ABN– 50 005 e.mail : Enviro web : www.eu	Sales@	eurofins m.au	s.com	2 0 P N	lelbourn -5 Kings vakleigh hone : + ATA # ² ite # 12	ston To VIC 31 +61 3 8 1261	wn Close 66 564 5000 271	Sydney Brisbane Perth Unit F3, Building F 1/21 Smallwood Place 2/91 Leach Highway 16 Mars Road Murarrie QLD 4172 Kewdale WA 6105 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone : +61 8 9251 9600 Phone : +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 NATA # 1261 Site # 18217 Site # 23736
	ompany Name: Idress:			Re	der N port # one: x:		0		5 9 7100 9 7199	· · · · ·			
	oject Name: oject ID:	LINDFIELD 2127850	VILLAGE HU	B - GROUNDW	ATER WELL INST	-ALLA	TION						Eurofins mgt Analytical Services Manager : Nibha Vaidya
Sample Detail						Asbestos - AS4964	HOLD	Iron	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)	
Melt	ourne Laborate	ory - NATA Site	# 1254 & 142	271									
-		- NATA Site # 1				х	Х	х	х	х	Х	Х	
		y - NATA Site #											
Pert	h Laboratory - N	NATA Site # 237	'36										
	rnal Laboratory											\mid	
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	BH1_0.2	Dec 05, 2018		Soil	S18-De06823	Х		х	х	х	х	х	
2	BH1_0.5	Dec 05, 2018		Soil	S18-De06824			х	х	х	Х	Х	
3	R2	Dec 05, 2018		Water	S18-De06825			х	х		х	х	
4	BH1_0.5D	Dec 05, 2018		Soil	S18-De06826			х	х	х	х	х	
5	BH1_0.4	Dec 05, 2018		Soil	S18-De06827		Х						
6	BH1_1.0	Dec 05, 2018		Soil	S18-De06828		Х						
7	BH1_1.5	Dec 05, 2018		Soil	S18-De06829		Х			<u> </u>			
8	BH1_2.0	Dec 05, 2018		Soil	S18-De06830		Х						
9	BH1_2.5	Dec 05, 2018		Soil	S18-De06831		Х						

🔅 eur		ngt	ABN– 50 005 e.mail : Enviro web : www.eur	Sales@e	eurofins m.au	.com	2- 0 P N	akleigh	ston Tov VIC 31 +61 3 8 1261	564 5000	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 2079	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 4 NATA # 1261 Site # 23736
Company Name: Address:	GHD Pty Ltd NSW Level 15, 133 Castl Sydney NSW 2000	ereagh Street			Re	der Ne port # one: k:		0		6 9 7100 9 7199		Received: Due: Priority: Contact Name:	Dec 5, 2018 6:24 PM Dec 12, 2018 5 Day Emma Harrison
Project Name: Project ID:	ATER WELL INST	TALLA	TION						Eurofin	s mgt Analytical Ser	vices Manager : Nibha Vaidya		
Sample Detail						Iron	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)			
Melbourne Laborate	ory - NATA Site # 1254	4 & 14271											
Sydney Laboratory	- NATA Site # 18217			Х	Х	Х	Х	х	х	х			
Brisbane Laborator	y - NATA Site # 20794												
Perth Laboratory - I	NATA Site # 23736												
I0 BH1_3.0	Dec 05, 2018	Soil	S18-De06832		Х								
1 BH1_3.5	Dec 05, 2018	Soil	S18-De06833		Х			<u> </u>					
2 BH1_4.0	Dec 05, 2018	Soil	S18-De06834		Х								
13 BH1_4.5	Dec 05, 2018	Soil	S18-De06835		Х								
14 BH1_5.0	Dec 05, 2018	Soil	S18-De06836		X								
15 BH1_5.5	Dec 05, 2018	Soil	S18-De06837		X								
I <u>6 BH1_6.0</u>	Dec 05, 2018	Soil	S18-De06838		X				<u> </u>	\vdash			
7 BH1_7.0	Dec 05, 2018	Soil	S18-De06839		X								
8 BH1_7.5	Dec 05, 2018	Soil	S18-De06840		X					\vdash			
9 BH1_8.0	Dec 05, 2018	Soil	S18-De06841		X								
20 BH1_8.5	Dec 05, 2018	Soil	S18-De06842		X					├──┤			
21 BH1_9.0	Dec 05, 2018	Soil	S18-De06843	1	X			1	1				

🛟 eur		ngt	ABN– 50 005 e.mail : Enviro web : www.eur	Sales@e	eurofins m.au	s.com	2- 0 Pl N	Dakleigh	ston Tov v VIC 31 +61 3 8 1261	564 5000	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 2079-	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 4 NATA # 1261 Site # 23736
Company Name: Address:	GHD Pty Ltd NSW Level 15, 133 Cast Sydney NSW 2000				Re	der Ne port # ione: x:	#:	0		6 9 7100 9 7199		Due: Priority:	Dec 5, 2018 6:24 PM Dec 12, 2018 5 Day Emma Harrison
Project Name: Project ID:	LINDFIELD VILLA 2127850	GE HUB - GROUNDV	VATER WELL INST	[ALLA	TION						Eurofin	s mgt Analytical Ser	vices Manager : Nibha Vaidya
	Sample Detail						Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)			
Melbourne Laborato	ory - NATA Site # 125	4 & 14271											
Sydney Laboratory	- NATA Site # 18217			Х	Х	Х	Х	Х	Х	Х			
Brisbane Laborator	y - NATA Site # 20794	1											
Perth Laboratory - N	ATA Site # 23736]		<u> </u>		\square				
22 BH1_9.5	Dec 05, 2018	Soil	S18-De06844		х		<u> </u>						
23 BH1_10.0	Dec 05, 2018	Soil	S18-De06845	\mid	Х	<u> </u>	 		⊥				
24 BH1_10.5	Dec 05, 2018	Soil	S18-De06846	\square	Х	\square'	<u> </u>	<u> </u>	\vdash				
25 BH1_11.0	Dec 05, 2018	Soil	S18-De06847	\square	Х	<u> </u>	<u> </u>	<u> </u>	\vdash				
26 BH1_11.5	Dec 05, 2018	Soil	S18-De06848		Х	\square	<u> </u>						
27 BH1_6.5	Dec 05, 2018	Soil	S18-De06849		х	\square	<u> </u>	<u> </u>	\square				
28 BH1_0.5T	Dec 05, 2018	Soil	S18-De06863		х		<u> </u>		\square				
29 BH1_20.23	Dec 05, 2018	Soil	S18-De06864		х		<u> </u>		\square				
30 BH1_21.05	Dec 05, 2018	Soil	S18-De06865				х	х					
Test Counts				1	25	4	5	4	4	4			

Internal Quality Control Review and Glossary

General

1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Terma	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	Quality Systems Manual ver 5.1 US Department of Defense
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	1		н I	1		
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	ons					
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank			· · · · ·			
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank						
Halogenated Volatile Organics						
1.1-Dichloroethane	mg/kg	< 0.5		0.5	Pass	
1.1-Dichloroethene	mg/kg	< 0.5		0.5	Pass	
1.1.1-Trichloroethane	mg/kg	< 0.5		0.5	Pass	
1.1.1.2-Tetrachloroethane	mg/kg	< 0.5		0.5	Pass	
1.1.2-Trichloroethane	mg/kg	< 0.5		0.5	Pass	
1.1.2.2-Tetrachloroethane	mg/kg	< 0.5		0.5	Pass	
1.2-Dibromoethane	mg/kg	< 0.5		0.5	Pass	
1.2-Dichlorobenzene	mg/kg	< 0.5		0.5	Pass	
1.2-Dichloroethane	mg/kg	< 0.5		0.5	Pass	
1.2-Dichloropropane	mg/kg	< 0.5		0.5	Pass	
1.2.3-Trichloropropane	mg/kg	< 0.5		0.5	Pass	
1.3-Dichlorobenzene	mg/kg	< 0.5		0.5	Pass	
1.3-Dichloropropane	mg/kg	< 0.5		0.5	Pass	
1.4-Dichlorobenzene	mg/kg	< 0.5		0.5	Pass	
Bromodichloromethane	mg/kg	< 0.5		0.5	Pass	
Bromoform	mg/kg	< 0.5		0.5	Pass	
Bromomethane	mg/kg	< 0.5		0.5	Pass	
Carbon Tetrachloride	mg/kg	< 0.5		0.5	Pass	
Chlorobenzene	mg/kg	< 0.5		0.5	Pass	
Chloroform	mg/kg	< 0.5		0.5	Pass	
Chloromethane	mg/kg	< 0.5		0.5	Pass	
cis-1.2-Dichloroethene	mg/kg	< 0.5		0.5	Pass	
cis-1.3-Dichloropropene	mg/kg	< 0.5		0.5	Pass	
Dibromochloromethane	mg/kg	< 0.5		0.5	Pass	
Dibromomethane	mg/kg	< 0.5		0.5	Pass	
lodomethane	mg/kg	< 0.5		0.5	Pass	
Methylene Chloride	mg/kg	< 0.5		0.5	Pass	
Tetrachloroethene	mg/kg	< 0.5		0.5	Pass	
trans-1.2-Dichloroethene	mg/kg	< 0.5		0.5	Pass	
trans-1.3-Dichloropropene	mg/kg	< 0.5		0.5	Pass	
Trichloroethene	mg/kg	< 0.5		0.5	Pass	
Trichlorofluoromethane	mg/kg	< 0.5		0.5	Pass	
Vinyl chloride	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	ons					
Naphthalene	mg/kg	< 0.5		0.5	Pass	

Test	Units	Result 1	A	cceptance Limits	Pass Limits	Qualifying Code
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank						
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank	IIIg/Kg	< 0.5		0.5	1 435	
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Beryllium	mg/kg	<2		2	Pass	
Boron	mg/kg	< 10		10	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Cobalt		< 5		5	Pass	
	mg/kg	< 5		5	Pass	
Copper	mg/kg					
Iron	mg/kg	< 20		20	Pass	
Lead	mg/kg	< 5		5	Pass	
Manganese	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Selenium	mg/kg	< 2		2	Pass	
Zinc	mg/kg	< 5		5	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					_	
TRH C6-C9	%	109		70-130	Pass	
TRH C10-C14	%	92		70-130	Pass	
LCS - % Recovery						
BTEX	-			70.100		
Benzene	%	97		70-130	Pass	
Toluene	%	95		70-130	Pass	
Ethylbenzene	%	111		70-130	Pass	
m&p-Xylenes	%	110		70-130	Pass	
o-Xylene	%	105		70-130	Pass	
Xylenes - Total	%	108		70-130	Pass	
LCS - % Recovery						
Halogenated Volatile Organics						
1.1-Dichloroethene	%	85		70-130	Pass	
1.1.1-Trichloroethane	%	94		70-130	Pass	

Те	est		Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
1.2-Dichlorobenzene			%	109	70-130	Pass	
1.2-Dichloroethane			%	99	70-130	Pass	
Trichloroethene			%	90	70-130	Pass	
LCS - % Recovery				·			
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fract	ions					
Naphthalene			%	114	70-130	Pass	
TRH C6-C10			%	110	70-130	Pass	
TRH >C10-C16			%	97	70-130	Pass	
LCS - % Recovery							
Polycyclic Aromatic Hydrocar	bons						
Acenaphthene			%	83	70-130	Pass	
Acenaphthylene			%	94	70-130	Pass	
Anthracene			%	99	70-130	Pass	
Benz(a)anthracene			%	88	70-130	Pass	
Benzo(a)pyrene			%	90	70-130	Pass	
Benzo(b&j)fluoranthene			%	96	70-130	Pass	
Benzo(g.h.i)perylene			%	103	70-130	Pass	
Benzo(k)fluoranthene			%	96	70-130	Pass	
Chrysene			%	98	70-130	Pass	
Dibenz(a.h)anthracene			%	105	70-130	Pass	
Fluoranthene			%	91	70-130	Pass	
Fluorene			%	94	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	99	70-130	Pass	
Naphthalene			%	93	70-130	Pass	
Phenanthrene			%	96	70-130	Pass	
Pyrene			%	92	70-130	Pass	
LCS - % Recovery			,,,		10.00	1 0.00	
Heavy Metals							
Arsenic			%	88	70-130	Pass	
Beryllium			%	109	70-130	Pass	
Boron			%	110	70-130	Pass	
Cadmium			%	97	70-130	Pass	
Chromium			%	113	70-130	Pass	
Cobalt			%	116	70-130	Pass	
Copper			%	119	70-130	Pass	
Iron			%	108	70-130	Pass	
Lead			%	115	70-130	Pass	
Manganese			%	101	70-130	Pass	
Mercury			%	125	70-130	Pass	
Nickel			%	116	70-130	Pass	
Selenium			%	85	70-130	Pass	
Zinc			%	103	70-130	Pass	
Test	Lab Sample ID	QA	Units	Result 1	Acceptance Limits	Pass	Qualifying
Spike - % Recovery		Source	5		Limits	Limits	Code
Total Recoverable Hydrocarbons - 1999 NEPM Fractions				Result 1			
TRH C10-C14	S18-De06987	NCP	%	83	70-130	Pass	
Spike - % Recovery							
BTEX				Result 1			
Benzene	S18-De06750	NCP	%	109	70-130	Pass	
Toluene	S18-De06750	NCP	%	106	70-130	Pass	
Ethylbenzene	S18-De06750	NCP	%	122	70-130	Pass	
	S18-De06750	NCP	%	118	70-130	Pass	
m&p-Xvienes							1
m&p-Xylenes o-Xylene	S18-De06750	NCP	%	112	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				-					
Halogenated Volatile Organics				Result 1					
1.1-Dichloroethene	S18-De06750	NCP	%	111			70-130	Pass	
1.1.1-Trichloroethane	S18-De06750	NCP	%	108			70-130	Pass	
1.2-Dichlorobenzene	S18-De06750	NCP	%	110			70-130	Pass	
1.2-Dichloroethane	S18-De06750	NCP	%	106			70-130	Pass	
Trichloroethene	S18-De06750	NCP	%	102			70-130	Pass	
Spike - % Recovery	·								
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	tions		Result 1					
Naphthalene	S18-De06750	NCP	%	97			70-130	Pass	
TRH >C10-C16	S18-De06987	NCP	%	84			70-130	Pass	
Spike - % Recovery		<u> </u>		<u> </u>					
Polycyclic Aromatic Hydrocarbo	ıs			Result 1					
Acenaphthene	S18-De12025	NCP	%	102			70-130	Pass	
Acenaphthylene	S18-De12025	NCP	%	106			70-130	Pass	
Anthracene	S18-De12025	NCP	%	112			70-130	Pass	
Benz(a)anthracene	S18-De12025	NCP	%	106			70-130	Pass	
Benzo(a)pyrene	S18-De12025	NCP	%	102			70-130	Pass	
Benzo(b&j)fluoranthene	S18-De12025	NCP	%	102			70-130	Pass	
Benzo(g.h.i)perylene	S18-De12025	NCP	%	117			70-130	Pass	
Benzo(k)fluoranthene	S18-De12025	NCP	%	117			70-130	Pass	
Chrysene	S18-De12025	NCP	%	114			70-130	Pass	
		NCP	%						
Dibenz(a.h)anthracene	S18-De12025			118			70-130	Pass	
Fluoranthene	S18-De12025	NCP	%	108			70-130	Pass	
Fluorene	S18-De12025	NCP	%	107			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S18-De12025	NCP	%	108			70-130	Pass	
Naphthalene	S18-De12025	NCP	%	105			70-130	Pass	
Phenanthrene	S18-De12025	NCP	%	113			70-130	Pass	
Pyrene	S18-De12025	NCP	%	108			70-130	Pass	
Spike - % Recovery				Desult 1					
Heavy Metals	S18-De13679	NOD	0/	Result 1			70.400	Deee	
Arsenic		NCP	%	84			70-130	Pass	
Beryllium	S18-De13679	NCP	%	94			70-130	Pass	
Cadmium	S18-De13679	NCP	%	80			70-130	Pass	
Chromium	S18-De13679	NCP	%	100			70-130	Pass	
Cobalt	S18-De13679	NCP	%	99			70-130	Pass	
Copper	S18-De13679	NCP	%	109			70-130	Pass	
Lead	S18-De13679	NCP	%	126			70-130	Pass	
Manganese	S18-De13679	NCP	%	101			70-130	Pass	
Mercury	S18-De13679	NCP	%	108			70-130	Pass	
Nickel	S18-De13679	NCP	%	99			70-130	Pass	
Selenium	S18-De13679	NCP	%	74			70-130	Pass	
Zinc	S18-De13679	NCP	%	121			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				1	1		1		
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	1		Result 1	Result 2	RPD			
TRH C6-C9	S18-De11198	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S18-De03420	NCP	mg/kg	39	41	4.0	30%	Pass	
TRH C15-C28	S18-De03420	NCP	mg/kg	50	54	7.0	30%	Pass	
TRH C29-C36	S18-De03420	NCP	mg/kg	< 50	< 50	<1	30%	Pass	

Duplicate									
BTEX				Result 1	Result 2	RPD	1		
Benzene	S18-De11198	NCP	malka	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S18-De11198	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
	S18-De11198	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene			mg/kg		1 1				
m&p-Xylenes	S18-De11198	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S18-De11198	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S18-De11198	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate				Result 1	Deput 2	RPD			
Halogenated Volatile Organics	C10 De11100	NOD			Result 2		200/	Daaa	
1.1-Dichloroethane	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1-Dichloroethene	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.1-Trichloroethane	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.1.2-Tetrachloroethane	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	-
1.1.2-Trichloroethane	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.2.2-Tetrachloroethane	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dibromoethane	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichlorobenzene	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichloroethane	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichloropropane	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2.3-Trichloropropane	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3-Dichlorobenzene	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3-Dichloropropane	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.4-Dichlorobenzene	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromodichloromethane	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromoform	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromomethane	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Carbon Tetrachloride	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chlorobenzene	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloroform	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloromethane	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
cis-1.2-Dichloroethene	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
cis-1.3-Dichloropropene	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromochloromethane	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromomethane	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
lodomethane	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Methylene Chloride	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Tetrachloroethene	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
trans-1.2-Dichloroethene	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
trans-1.3-Dichloropropene	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichloroethene	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichlorofluoromethane	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Vinyl chloride	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate					1 010		0070	1 400	
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S18-De11198	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S18-De11198	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S18-De03420	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S18-De03420	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S18-De03420	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
	010-0603420		i iig/Kg			<u> </u>	30 /0	1.922	
Duplicate	one			Pooult 1	Result 2	RPD			
Polycyclic Aromatic Hydrocarbo		NCD	maller	Result 1	1		200/	Page	
Acenaphthene	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Polycyclic Aromatic Hydrocar	bons			Result 1	Result 2	RPD			
Benzo(a)pyrene	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Hea∨y Metals				Result 1	Result 2	RPD			
Arsenic	S18-De12945	NCP	mg/kg	3.4	3.9	14	30%	Pass	
Beryllium	S18-De12945	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Boron	S18-De12945	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Cadmium	S18-De07641	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-De12945	NCP	mg/kg	13	16	19	30%	Pass	
Copper	S18-De12945	NCP	mg/kg	19	21	11	30%	Pass	
Iron	S18-De12945	NCP	mg/kg	38000	41000	6.0	30%	Pass	
Lead	S18-De12945	NCP	mg/kg	42	50	17	30%	Pass	
Manganese	S18-De12945	NCP	mg/kg	110	120	6.0	30%	Pass	
Mercury	S18-De12945	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S18-De12945	NCP	mg/kg	6.6	6.1	9.0	30%	Pass	
Selenium	S18-De12945	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Zinc	S18-De12945	NCP	mg/kg	59	69	16	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S18-De06823	CP	%	16	18	11	30%	Pass	

Comments

Eurofins | mgt accreditation number 1261, corporate site 1254 and 14271 is currently in progress of a controlled transition to a new custom built location at 6 Monterey Road, Dandenong South, Victoria 3175. All results on this report denoted as being performed by Eurofins | mgt 2-5 Kingston Town Close, Oakleigh Victoria 3166 corporate site 1254, will have been performed on either Oakleigh or new Dandenong South site.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Nibha Vaidya	Analytical Services Manager
Andrew Sullivan	Senior Analyst-Organic (NSW)
Gabriele Cordero	Senior Analyst-Metal (NSW)
Nibha Vaidya	Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofines [mg] shall not be liable for [css, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofine is mg be liable for consequential damages including, but not initianted to, its protection, and angle or trained to meet and the production assisting from the isoper. This document shall not be reported execution that instruction.

CH.	AIN OF CUS	TODY RECORD		Laboratory d.F, 16 Mars F 400 EnviroS	Rd, Lane Cov			 Unit 1, 2 	ne Laboratory 21 Smallwood PL, Murarrie, QL 4600 — EnviroSampleQLD@r			L aboratory 11 Leach Highway, Kewdale 9600 EnviroSampleWA@		2 King	ourne Laboratory ston Town Close, Oakleigh i4 5000 EnviroSampleVid	
Company	G	HD Pty Ltd	Project Nº			212	7850		Project Manager		Emma Harriso	n				
	Level 15, 133 Castlere	agh St	Project Name	Lindfie	ld Village	Hub - gro	undwate	r well installation	Report Format		ESDat		Relinguished by	Em	na Harv	rison
	Sydney, 2000		litered")	Cu, Hg, Pb,										_:		5112/18
Contact Name	Em	ima Harrison	"tolal" or "F	රි	(2)	(9 64)	(6						Email for Results	emmo	. horn'son	neghd.ra
Phone №	04	408 401 511	sis ase specify XN, PAH	, Cd, Co	Organics	toil (AS 4	iyls (PCE						Cont	ainers	Turn Aroun	d Requirements
Special Direction			Analysis Here metals are requested, passe specify Suite B4 : TRH, BTEXN, PAH	Suite M13A - NEPM Metals (As, Be, B, Cd, Co, Ni, Mn, Se, Zn)	Halogenated Volatile Organics	Asbestos identification in soil (AS 4964)	Polychlorinated Biphenyls (PCB)	Iron (Fe)					s stic Glass	Glass		lam)* □ 2 Day*
Purchase Order			Mhore metal Suite B	EPM Me	Haloger	estos ide	olychlor						1L Plastic 250mL Plastic 125mL Plastic 200mL Amber Gl	40mLvial 125mL Amber (Jar	□ 3 Day*	🗹 5 Day
Quote ID №	181121GF	HDN	(Note /	113A - NI		Asb							11 250 125 200mL	41 125mL	D Other () *Surcharges apply
Ne	Client Sample ID	Date	Matrix	Suite N												Comments / ard Warning
1 BH2	2_0.1	4/12	soil	~	~	\checkmark	\checkmark							J	possi	ble
2 BHZ	2-0.4	1												1		
	2-0.5			1	/		~	\checkmark								
4 0.0	2_10	·														
and the second second	2-1.5															
	2-2.0															
	2 - 2.5															
	2 - 3.0															
0																
10 BH			1													
"BH	2 - 4.0	J V Total C	ounts 2	2	2		2	2	118					1		
Method of Shipment	Courier (#		Hand Delivered			Na			tarvison	Signature	Soh	mei	Date	51218	Time	
	Received By	Luca D	SYD	BNE MEL	PER /	ADL NEV		Signature	Tuada		Date	05-12-18	Time	6:27		2.27°C
Laboratory Use O	Received By		SYD I	BNE MEL	PER /	ADL NEV	V DAR	Signature	concer pla		Date		Time	<u></u>	Report №	631640

CHAIN OF CUSTODY-RECORD		Unit F3 8	Laboratory Bld.F, 16 Mars Rd, Lane B400 EnviroSampleN;	Cove West, NSW 2006 SW@eurofins.com		: Laboratory Smallwood PL, Murarrie, QLD 4172 300 EnviroSampleQLD@aurofins.com	Perth Laboratory Unit 2, 91 Leach Highway 08 9251 9600 Enviro Sar					
Company	GHD Pty Ltd	Project №		2127850		Project Manager	Emma Harrison					
Address	Level 15, 133 Castlereagh St Sydney, 2000	Project Name		ge Hub - groundwat	er well installation	Report Format	ESDat	Relinquished t	v Enne			
Contact Name	Emma Harrison	or "Fillered"	Cu, Hg, F					Email for Resul			<u>12118</u>	
Phone Ne	0408 401 511	pecity "Total" PAH	, Co, Cr, anics	AS 4964) PCB)					ntainers		on eghol i a	
Special Directio		here meaule are requested peace specifi Suite B4 : TRH, BTEXN, PAH	Suite M13A - NEPM Metals (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn) Halogenated Volatile Organics	Asbestos identification in soil (AS 4964) Polychlorinated Biphenyls (PCB)	Iron (Fe)			Istic Plastic Plastic	oer class vial ber Glass	□ Overnight (9: □ 1 Day*	□ 2 Day*	
Purchase Orde Quote ID №	181121GHDN	Note Where Sui	A - NEPM Halo	Asbesto Polyc				1L Plastic 250mL Plastic 125mL Plastic	tournL Amber Glass 40mLvial 25mL Amber Glass Jair	3 Day*	☑ 5 Day	
NI	Client Sample ID Date	Matrix	uite M13/					ę			*Surcharges apply Comments /	
BH	12-4.5 All2	Soil	0						Y	DG Haza	rd Warning	
	SH2-5.0 1	1										
3 B7	12 - 5.5					Ţ						
10	12 - 6.0											
	H2 - 6.5											
	H2 _7.0											
	H2 - 7.5											
	12-50											
		- + -										
10 p	H2-8.5	V										
		l Counts							0		1	
Method of Shipment	Courier (#)	Hand Delivered	Postal	Name	Emmo	Horrison Signatur	· babusé	Date	SILAIS	, Time		
Laboratory Use	Received By Lella D.	T	BNE MEL] PER	ADL NEW DAR	Signature	Sur hears	Date 05/12	Time	6-27 pm	Temperature	2,27°C 631640	
	Received By	SYD	BNE MEL PER	ADL NEW DAR			Date/	/ Time		Report №	631640	

ý

					aboratory F, 16 Mars Ri 00 EnviroSa				Unit 1, 21	l e Laboratory I Smallwood PI., Murarrie, QL 1600 EnviroSampleQLD@i			sboratory Leach Highway, Kewdale 600 – EnviroSampleWA@		Melbourne Laboratory 2 Kingston Town Close, Oakleigh, VIC 3166 03 8564 5000 EnviroSampleVic@eurofins.com				
Company	GHD Pty Ltd		Projec				2127			Project Manager		Emma Harrison							
Address	Level 15, 133 Castlereagh St		Project	Name	Lindfiel	d Village	Hub - gro	oundwater	well installation	Report Format		ESDat		Relinguished by	CITINE TO TO TO TO				
Autress	Sydney, 2000		iltered")		Cr, Cu, Hg, Pb,										_:	Į	512118		
Contact Name	Emma Harrisor	1	-Tolat or F	_	o, Cr, Cu,	S	4964)	B)						Email for Result	enma.		egid. rev		
Phone №	0408 401 511		r SiS lease specify	EXN, PAF	B, Cd, C	Organic	soil (AS	inyls (PC						Con	lainers	and the second	l Requirements		
pecial Directio	n		Analy requested. p	Suite B4 : TRH, BTEXN, PAH	- NEPM Metals (As, Be, B, Cd, Co, Ni, Mn, Se, Zn)	Halogenated Volatile Organics	Asbestos identification in soil (AS 4964)	Polychlorinated Biphenyls (PCB)	Iron (Fe)					3	~ SS	Overnight (9)	am)*		
urchase Orde			re metals are	uite B4 : 1	M Metals Ni,	alogenate	os identif	ychlorina						1L Plastic 250mL Plastic 125mL Plastic ImL Amber Gla	40mLvial ıL Amber Glası Jar	□ 3 Day*	☑ 5 Day		
Quote ID Nº	181121GHDN		(Note Whe	Ō	3A - NEP	Ĥ	Asbest	Pol						1L Plastic 250mL Plastic 125mL Plastic 200mL Amber Gla	40m£via 125mL Amber Jar	D Other ()		
42	Client Sample ID	Date	Matrix		Suite M13A										Other (*Surcharges apply Comments / Ind Warning		
RH	12-9.5	44.2	soil												1				
	12-10.0	1	1																
	12 - 10.5																		
	42- 11.0	V	1												J				
R	2 20	AN I	V																
0	12-12-0	¥													1				
	PI	4/12	weter	-1	1	\checkmark		~	/										
	R I Trip spike	4/12													1				
9 7	rip blank	412													1				
10	the plane	110																	
		Total C	ounts												2				
Method of Shipment	Courier (#)	Hand Delive	red	D Po	stal	Na	ame	Emmo	Harrison	Signature	allan	si	Date	51218		_:		
Laboratory Us	e Only Received By	aD.		-	BNE MEL				Signature	Reciel		Date	05/12/18	Time	6:27 PM	* Temperature	2,27°C 631640		
-	Received By			SYD	BNE MEL	. PER	ADL NE	W DAR	Signature			Date	_!_!_	Time		Report №	631640		

-

Submission of samples to the taboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request

Enviro Sample NSW

То:	Nibha Vaidya; COC NSW
Subject:	RE: Eurofins mgt Sample Receipt Advice - Report 631640 : Site LINDFIELD VILLAGE
	HUB - GROUNDWATER WELL INSTALLATION (2127850)

From: Emma Harrison
Sent: Friday, 7 December 2018 9:42 AM
To: 'EnviroSampleNSW@eurofins.com' <<u>EnviroSampleNSW@eurofins.com</u>>
Cc: Jo Curry <<u>Joanna.Curry@ghd.com</u>>
Subject: RE: Eurofins | mgt Sample Receipt Advice - Report 631640 : Site LINDFIELD VILLAGE HUB - GROUNDWATER
WELL INSTALLATION (2127850)

Hi Nibha,

I've just tried calling a couple of times but with no luck.

For the trip spike in this sample batch, would you please analyse for BTEXN?

For the trip blank in this sample batch, would you please analyse for BTEXN and TRH?

Also, would you please add Joanna Curry to the COC emails and results?

Many thanks, Emma

From: EnviroSampleNSW@eurofins.com <EnviroSampleNSW@eurofins.com> Sent: Thursday, 6 December 2018 6:53 PM To: Emma Harrison <<u>Emma.Harrison@ghd.com</u>> Subject: Eurofins | mgt Sample Receipt Advice - Report 631640 : Site LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTALLATION (2127850)

Dear Valued Client,

Extra Jar received for BH2_12.0, BH2_13.5, BH2_15.0 and asbestos bag for BH2_12.0 placed on hold.

Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chainof-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested analysis. If there are any irregularities then please contact your Eurofins | mgt Analytical Services Manager as soon as possible to make certain that they get changed.

Regards

Luca Dominici Sample Receipt

Eurofins | mgt

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA Phone: +61 29900 8492 Email: <u>EnviroSampleNSW@eurofins.com</u> Website:<u>environment.eurofins.com.au</u>

GHD Pty Ltd NSW

Melbourne Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Hors State Cove Mest NSW 2067 Phone : +61 2 9900 8400 NATA # 1261 Site # 20794

web : www.eurofins.com.au

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com

Sample Receipt Advice

1, 2	, ,
Contact name:	Emma Harrison
Project name:	LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTALLATION
Project ID:	2127850
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Dec 5, 2018 6:27 PM
Eurofins mgt reference:	631640

Sample information

Company name:

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 2.3 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- \boxtimes Split sample sent to requested external lab.
- \times Some samples have been subcontracted.

Custody Seals intact (if used). Notes^{N/A}

Extra Jar received for BH2 12.0, BH2 13.5, BH2 15.0 and asbestos bag for BH2 12.0 placed on hold.

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Emma Harrison - emma.harrison@ghd.com.

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

38 Years of Environmental Analysis & Experience

eurofins mgt ABN- 50 005 e.mail : Envir web : www.e							eurofins	.com	2- 0 P N	Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271				Lai Ph	ne Cove	Brisbane Perth Building F 1/21 Smallwood Place 2/91 Leach Highway Road Murarrie QLD 4172 Kewdale WA 6105 ve West NSW 2066 Phone : +61 7 3902 4600 Phone : +61 8 9251 9600 +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 1261 Site # 18217 Site # 23736	
A o	ompany Name: Idress: oject Name:	Sydney NSW 2000 LINDFIELD	3 Castlereagh		TER WELL INST	ALLA	Re Ph Fa:	der N port a one: x:		0	31640 2 923 2 923	9 710				Received:Dec 5, 2018 6:27 PMDue:Dec 12, 2018Priority:5 DayContact Name:Emma Harrison]
Pr	oject ID:	2127850														Eurofins mgt Analytical Services Manager : Nibha Vaidya	
		Asbestos - AS4964	НОГД	Iron	Polychlorinated Biphenyls	BTEX and Naphthalene	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	BTEXN and Volatile TRH	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)						
		ory - NATA Site		271													
		- NATA Site # 1				Х	X	Х	Х	Х	Х	Х	X	Х	Х	-	
		ry - NATA Site #														-	
		NATA Site # 237	30								-					-	
No																-	
1	BH2_0.1	Dec 04, 2018	Time	Soil	S18-De06749	x		x	x		x	x	x		x	-	
2	BH2_0.1 BH2_0.5	Dec 04, 2018 Dec 04, 2018		Soil	S18-De06749 S18-De06750			X	X		x	X	X		X	—	
3	R1	Dec 04, 2018		Water	S18-De06750			X	X		X		x		X	—	
4	BH2_0.4	Dec 04, 2018		Soil	S18-De06752		x									1	
5	BH2_1.0	Dec 04, 2018		Soil	S18-De06753		X									1	
6	BH2_1.5	Dec 04, 2018		Soil	S18-De06754		х									-	
7	BH2_2.0	Dec 04, 2018		Soil	S18-De06755		х										
8	BH2_2.5 Dec 04, 2018 Soil S18-De06756					х											
9	BH2_3.0	Dec 04, 2018		Soil	S18-De06757		Х										

	🛟 eur	ofins	mgt		ABN- 50 005 (e.mail : Enviro web : www.eur	Sales@	eurofins	s.com	2 C P N	felbourr -5 Kings Dakleigh Phone : JATA # Site # 12	ston Tov VIC 31 +61 3 8 1261	564 500	e 00	16 Lai Ph	one : +6'	ilding F bad West NSW 2066 1 2 9900 8400 61 Site # 18217	Brisbane 1/21 Smallwood Murarrie QLD 41 Phone : +61 7 33 NATA # 1261 Sir	72 902 4600	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	
A l	ompany Name: ddress: oject Name: oject ID:	ATER WELL INST	ΓALLA	Re Ph Fa	der N port / one: x:		0	31640 2 923 2 923	9 710					Received: Due: Priority: Contact Name	:	Dec 5, 2018 6:27 PM Dec 12, 2018 5 Day Emma Harrison				
	Sample Detail								Polychlorinated Biphenyls	BTEX and Naphthalene	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	BTEXN and Volatile TRH	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)	Euron	ns mgt Analytic	cai Serv	vices Manager : Nibha Va	loya
Mel	bourne Laborate	ory - NATA Site	# 1254 & 1427 ²																	
	ney Laboratory					х	х	х	Х	х	х	Х	х	Х	Х					
Bris	bane Laborator	y - NATA Site #	20794																	
Per	h Laboratory - N	NATA Site # 237	736																	
10	BH2_3.5	Dec 04, 2018	s	oil	S18-De06758		Х													
11	BH2_4.0	Dec 04, 2018	s	oil	S18-De06759		х													
12	BH2_4.5	Dec 04, 2018	s	oil	S18-De06760		Х													
13	BH2_5.0	Dec 04, 2018		oil	S18-De06761		Х						ļ							
14	BH2_5.5	Dec 04, 2018		oil	S18-De06762		Х													
15	BH2_6.0	Dec 04, 2018		oil	S18-De06763		Х													
16	BH2_6.5	Dec 04, 2018	s	oil	S18-De06764		Х													
17	BH2_7.0	Dec 04, 2018	s	oil	S18-De06765		Х													
18	BH2_7.5	Dec 04, 2018	s	oil	S18-De06766		Х													
19	BH2_8.0	Dec 04, 2018		oil	S18-De06767		Х													
20	BH2_8.5	Dec 04, 2018	s	oil	S18-De06768		Х													
21	BH2_9.0	Dec 04, 2018	s	oil	S18-De06769		Х]				

e.mail :) 005 085 52 EnviroSales vw.eurofins.	@eurofins	s.com	2 0 P N	Aelbourr -5 Kings Dakleigh Phone : - IATA # Site # 12	ston To VIC 31 +61 3 8 1261	564 500	e 0	16 Lar Pho	one : +6'	ding F ad West NSW 2066 2 9900 8400 1 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 46(NATA # 1261 Site # 20)	Perth 2/91 Leach Highway Kewdale WA 6105 00 Phone : +61 8 9251 9600 794 NATA # 1261 Site # 23736
Company Name: GHD Pty Ltd NSW Address: Level 15, 133 Castlereagh Street Sydney NSW 2000 Project Name: LINDFIELD VILLAGE HUB - GROUNDWATER WELL Project ID: 2127850	INSTALL	Re Ph Fa			0) 9 710 9 719				Eurofin	Received: Due: Priority: Contact Name:	Dec 5, 2018 6:27 PM Dec 12, 2018 5 Day Emma Harrison ervices Manager : Nibha Vaidya
Sample Detail	Asbestos - AS4964	HOLD	Iron	Polychlorinated Biphenyls	BTEX and Naphthalene	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	BTEXN and Volatile TRH	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)			
Melbourne Laboratory - NATA Site # 1254 & 14271													
Sydney Laboratory - NATA Site # 18217	X	Х	Х	Х	х	Х	Х	х	Х	х			
Brisbane Laboratory - NATA Site # 20794													
Perth Laboratory - NATA Site # 23736													
22 BH2_9.5 Dec 04, 2018 Soil S18-De067		X											
23 BH2_10.0 Dec 04, 2018 Soil S18-De067		X								$\left - \right $			
24 BH2_10.5 Dec 04, 2018 Soil S18-De067 25 DU0.44.0 Du0.44.0040 Du1.400 Du0.44.0040		X											
25 BH2_11.0 Dec 04, 2018 Soil S18-De067 26 TRID SDIVE Dec 04, 2018 Soil S18-De067		X			~		<u> </u>			$\left - \right $			
26 TRIP SPIKE Dec 04, 2018 Soil S18-De067 27 TRIP RI ANIC Dec 04, 2018 Soil S18-De067		-			X				х	$\left - \right $			
27 TRIP BLANK Dec 04, 2018 Soil S18-De067 28 BH2, 12,0 Dec 04, 2018 Soil S18-De067		x							X	$\left \right $			
28 BH2_12.0 Dec 04, 2018 Soil S18-De068 29 BH2_13.5 Dec 04, 2018 Soil S18-De068		X											
	13												
30 BH2_15 Dec 04, 2018 Soil S18-De068	14	X											

Level 15, 133 Castlereagh Street

GHD Pty Ltd NSW

Sydney NSW 2000 mgt

Certificate of Analysis

WP90

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Report Project Name Project ID Received Date Date Reported	Emma Harrison 631640-AID LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTALLATION 2127850 Dec 05, 2018 Dec 13, 2018
Methodology: Asbestos Fibre Identification	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.
Unknown Mineral Fibres	Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity. NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.
Subsampling Soil Samples	The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed. NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.
Limit of Reporting	The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01% " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project NameLINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTALLATIONProject ID2127850Date SampledDec 04, 2018Report631640-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
BH2_0.1	18-De06749	Dec 04, 2018	Approximate Sample 349g Sample consisted of: Brown coarse-grained soil and rocks	Chrysotile and amosite asbestos detected in fibre cement fragments and chrysotile asbestos detected in the form of loose fibre bundles. Approximate raw weight of asbestos containing material = 41g* Total estimated asbestos content in the sample = 5.3g* Total estimated asbestos concentration = 1.5% w/w* Organic fibre detected. No respirable fibres detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Asbestos - LTM-ASB-8020 Testing SiteExtractedHolding TimeSydneyDec 06, 2018Indefinite

eurofins	
	mgt

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: GHD Pty Ltd NSW Address: Level 15, 133 Castlereagh Street Sydney NSW 2000 Project Name: LINDFIELD VILLAGE HUB - GROUNDWATER WELL INST/						TALLA	Order No.: Report #: Phone: Fax: ALLATION			0	31640 2 923 2 923	9 710					Received: Due: Priority: Contact Name:		Dec 5, 2018 6:27 PM Dec 12, 2018 5 Day Emma Harrison	
Pr	oject ID:	2127850														Eurofins	s mgt Analytic	cal Serv	vices Manager : Nibha Vaidya	
	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271						НОГД	Iron	Polychlorinated Biphenyls	BTEX and Naphthalene	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	BTEXN and Volatile TRH	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)					
				271		X	x	x	x	x	x	х	x	x	X					
	ney Laboratory bane Laboratory					×	×	×	×	×	~	×	~	×	×					
	h Laboratory - N																			
	rnal Laboratory																			
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID															
1	BH2_0.1	Dec 04, 2018		Soil	S18-De06749	х		X	х		х	х	х		Х					
2	BH2_0.5	Dec 04, 2018		Soil	S18-De06750			х	х		х	Х	х		Х					
3	R1	Dec 04, 2018		Water	S18-De06751			Х	х		х		х		Х					
4	BH2_0.4	Dec 04, 2018		Soil	S18-De06752		х													
5	BH2_1.0	Dec 04, 2018		Soil	S18-De06753		х													
6	BH2_1.5	Dec 04, 2018		Soil	S18-De06754		х													
7	BH2_2.0	Dec 04, 2018		Soil	S18-De06755		х													
8	BH2_2.5	Dec 04, 2018		Soil	S18-De06756		х													
9	BH2_3.0	Dec 04, 2018		Soil	S18-De06757		х													

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

	eurofins	
•••		

l mg	t
------	---

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Add	npany Name: dress: ject Name:	GHD Pty Ltd NSW Level 15, 133 Castle Sydney NSW 2000 LINDFIELD VILLAG	-	WATER WELL INST	ALLA	Re Ph Fa		#:	0) 9 710 9 719				Received:Dec 5, 2018 6:27 PMDue:Dec 12, 2018Priority:5 DayContact Name:Emma Harrison
Pro	ject ID:	2127850													Eurofins mgt Analytical Services Manager : Nibha Vaidya
		Asbestos - AS4964	HOLD	Iron	Polychlorinated Biphenyls	BTEX and Naphthalene	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	BTEXN and Volatile TRH	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)				
		ry - NATA Site # 1254	& 14271												
		NATA Site # 18217			Х	Х	Х	Х	Х	Х	Х	X	Х	Х	
		/ - NATA Site # 20794													
		ATA Site # 23736	0	040 D 00750		v									
		Dec 04, 2018 Dec 04, 2018	Soil Soil	S18-De06758 S18-De06759		X X									
		Dec 04, 2018	Soil	S18-De06760		X									
		Dec 04, 2018	Soil	S18-De06761		X									
		Dec 04, 2018	Soil	S18-De06762		X									
		Dec 04, 2018	Soil	S18-De06763		X									
		Dec 04, 2018	Soil	S18-De06764		X									
		Dec 04, 2018	Soil	S18-De06765		х									
	_	Dec 04, 2018	Soil	S18-De06766		Х									
		Dec 04, 2018	Soil	S18-De06767		Х									
		Dec 04, 2018	Soil	S18-De06768		Х									
		Dec 04, 2018	Soil	S18-De06769		Х									

eurofins	
	mgt

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217
 Brisbane
 F

 1/21 Smallwood Place
 2

 Murarrie QLD 4172
 k

 Phone : +61 7 3902 4600
 F

 NATA # 1261 Site # 20794
 K

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: GHD Pty Ltd NSW Address: Level 15, 133 Castlereagh Street Sydney NSW 2000 Project Name: LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTA Project ID: 2127850						Re Ph Fa			02) 9 710 9 719				Received:Dec 5, 2018 6:27 PMDue:Dec 12, 2018Priority:5 DayContact Name:Emma HarrisonEurofins mgt Analytical Services Manager : Nibha Vaidya
	Sample Detail							Polychlorinated Biphenyls	BTEX and Naphthalene	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	BTEXN and Volatile TRH	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)	
		ory - NATA Site													
		- NATA Site # 18			Х	Х	Х	Х	Х	Х	Х	X	Х	Х	
		y - NATA Site #													
	1	NATA Site # 237		040 D 00770											
22 23	BH2_9.5 BH2 10.0	Dec 04, 2018 Dec 04, 2018	Soil Soil	S18-De06770 S18-De06771		X X									
23	BH2_10.0 BH2_10.5	Dec 04, 2018 Dec 04, 2018	Soil	S18-De06772		x									
25	BH2_11.0	Dec 04, 2018	Soil	S18-De06773		X									
26	TRIP SPIKE	Dec 04, 2018	Soil	S18-De06774					х						
27	TRIP BLANK	Dec 04, 2018	Soil	S18-De06775									х		
28	BH2_12.0	Dec 04, 2018	Soil	S18-De06812		х									
29	 BH2_13.5	Dec 04, 2018	Soil	S18-De06813		х									
30	BH2_15	Dec 04, 2018	Soil	S18-De06814		х									
Test	Counts				1	25	3	3	1	3	2	3	1	3	

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Internal Quality Control Review and Glossary General

1. QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

mgt

Units

% w/w: weight for weight	ght basis	grams per kilogram
Filter loading:		fibres/100 graticule areas
Reported Concentration	in:	fibres/mL
Flowrate:		L/min
Terms		
Dry	Sample is dried by heating prior to analysis	
LOR	Limit of Reporting	
COC	Chain of Custody	
SRA	Sample Receipt Advice	
ISO	International Standards Organisation	
AS	Australian Standards	
WA DOH		ia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated acommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)
NEPM	National Environment Protection (Assessment of Site Contamination	n) Measure, 2013 (as amended)
ACM	Asbestos Containing Materials. Asbestos contained within a non-ast NEPM, ACM is generally restricted to those materials that do not particle to the second state of t	bestos matrix, typically presented in bonded and/or sound condition. For the purposes of the ss a 7mm x 7mm sieve.
AF	Asbestos Fines. Asbestos containing materials, including friable, we equivalent to "non-bonded / friable".	athered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as
FA	Fibrous Asbestos. Asbestos containing materials in a friable and/or s materials that do not pass a 7mm x 7mm sieve.	severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those
Friable	Asbestos-containing materials of any size that may be broken or cru outside of the laboratory's remit to assess degree of friability.	mbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is
Trace Analysis	Analytical procedure used to detect the presence of respirable fibres	in the matrix.

Comments

Eurofins | mgt accreditation number 1261, corporate site 1254 and 14271 is currently in progress of a controlled transition to a new custom built location at 6 Monterey Road, Dandenong South, Victoria 3175. All results on this report denoted as being performed by Eurofins | mgt 2-5 Kingston Town Close, Oakleigh Victoria 3166 corporate site 1254, will have been performed on either Oakleigh or new Dandenong South site.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

CodeDescriptionN/ANot applicable

Asbestos Counter/Identifier:

Authorised by:

Sayeed Abu

Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Emma Harrison

Dec 05, 2018

Report Project name Project ID Received Date 631640-S LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTALLATION 2127850

						1
Client Sample ID			BH2_0.1	BH2_0.5		TRIP BLANK
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-De06749	S18-De06750	S18-De06774	S18-De06775
Date Sampled			Dec 04, 2018	Dec 04, 2018	Dec 04, 2018	Dec 04, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	99	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	-	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	-	-
TRH >C16-C34	100	mg/kg	< 100	< 100	-	-
TRH >C34-C40	100	mg/kg	< 100	< 100	-	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	-	-
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	-	< 20
TRH C10-C14	20	mg/kg	< 20	35	-	-
TRH C15-C28	50	mg/kg	< 50	< 50	-	-
TRH C29-C36	50	mg/kg	< 50	< 50	-	-
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	-	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	99	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	110	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	110	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	100	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	100	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	100	< 0.3
4-Bromofluorobenzene (surr.)	1	%	87	77	86	87
Halogenated Volatile Organics						
1.1-Dichloroethane	0.5	mg/kg	< 0.5	< 0.5	-	-
1.1-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	-	-
1.1.1-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	-	-
1.1.1.2-Tetrachloroethane	0.5	mg/kg	< 0.5	< 0.5	-	-
1.1.2-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	-	-
1.1.2.2-Tetrachloroethane	0.5	mg/kg	< 0.5	< 0.5	-	-
1.2-Dibromoethane	0.5	mg/kg	< 0.5	< 0.5	-	-
1.2-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	-	-
1.2-Dichloroethane	0.5	mg/kg	< 0.5	< 0.5	-	-
1.2-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	-	-
1.2.3-Trichloropropane	0.5	mg/kg	< 0.5	< 0.5	-	-
1.3-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	-	-

Client Sample ID			BH2_0.1	BH2_0.5	R20TRIP SPIKE	TRIP BLANK
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-De06749	S18-De06750	S18-De06774	S18-De06775
Date Sampled						
•			Dec 04, 2018	Dec 04, 2018	Dec 04, 2018	Dec 04, 2018
Test/Reference	LOR	Unit				
Halogenated Volatile Organics						
1.3-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	-	-
1.4-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	-	-
Bromodichloromethane	0.5	mg/kg	< 0.5	< 0.5	-	-
Bromoform	0.5	mg/kg	< 0.5	< 0.5	-	-
Bromomethane	0.5	mg/kg	< 0.5	< 0.5	-	-
Carbon Tetrachloride	0.5	mg/kg	< 0.5	< 0.5	-	-
Chlorobenzene	0.5	mg/kg	< 0.5	< 0.5	-	-
Chloroform	0.5	mg/kg	< 0.5	< 0.5	-	-
Chloromethane	0.5	mg/kg	< 0.5	< 0.5	-	-
cis-1.2-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	-	-
cis-1.3-Dichloropropene	0.5	mg/kg	< 0.5	< 0.5	-	-
Dibromochloromethane	0.5	mg/kg	< 0.5	< 0.5	-	-
Dibromomethane	0.5	mg/kg	< 0.5	< 0.5	-	-
lodomethane	0.5	mg/kg	< 0.5	< 0.5	-	-
Methylene Chloride	0.5	mg/kg	< 0.5	< 0.5	-	-
Tetrachloroethene	0.5	mg/kg	< 0.5	< 0.5	-	-
trans-1.2-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	-	-
trans-1.3-Dichloropropene	0.5	mg/kg	< 0.5	< 0.5	-	-
Trichloroethene	0.5	mg/kg	< 0.5	< 0.5	-	-
Trichlorofluoromethane	0.5	mg/kg	< 0.5	< 0.5	-	-
Vinyl chloride	0.5	mg/kg	< 0.5	< 0.5	-	-
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	< 0.5	< 0.5	-	-
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	< 0.5	< 0.5	-	-
4-Bromofluorobenzene (surr.)	1	%	87	77	-	-
Toluene-d8 (surr.)	1	%	103	92	-	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	-	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	-	-
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	-	-
Anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	-
Chrysene	0.5	mg/kg	< 0.5	< 0.5	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	-
Fluorene	0.5	mg/kg	< 0.5	< 0.5	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	-	-
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	-	-
2-Fluorobiphenyl (surr.)	1	%	102	102	-	-
p-Terphenyl-d14 (surr.)	1	%	104	106	-	-

Client Sample ID			BH2_0.1	BH2_0.5	R20TRIP SPIKE	TRIP BLANK
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-De06749	S18-De06750	S18-De06774	S18-De06775
Date Sampled			Dec 04, 2018	Dec 04, 2018	Dec 04, 2018	Dec 04, 2018
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls	1					
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	-	-
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	-	-
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	-	-
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	-	-
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	-	-
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	-	-
Dibutylchlorendate (surr.)	1	%	138	136	-	-
Tetrachloro-m-xylene (surr.)	1	%	119	122	-	-
Heavy Metals						
Arsenic	2	mg/kg	7.1	9.9	-	-
Beryllium	2	mg/kg	< 2	< 2	-	-
Boron	10	mg/kg	< 10	< 10	-	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	-	-
Chromium	5	mg/kg	24	22	-	-
Cobalt	5	mg/kg	5.6	< 5	-	-
Copper	5	mg/kg	27	16	-	-
Iron	20	mg/kg	31000	40000	-	-
Lead	5	mg/kg	100	25	-	-
Manganese	5	mg/kg	150	12	-	-
Mercury	0.1	mg/kg	0.2	< 0.1	-	-
Nickel	5	mg/kg	19	< 5	-	-
Selenium	2	mg/kg	< 2	< 2	-	-
Zinc	5	mg/kg	150	12	-	-
% Moisture	1	%	13	20	-	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 11, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons	Sydney	Dec 11, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Dec 12, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Dec 11, 2018	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Eurofins mgt Suite B4			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 12, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Dec 12, 2018	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Halogenated Volatile Organics	Sydney	Dec 11, 2018	7 Day
- Method: E016 Volatile Halogenated Compounds (VHC)			
Polychlorinated Biphenyls	Sydney	Dec 12, 2018	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)	Sydney	Dec 11, 2018	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Heavy Metals	Sydney	Dec 11, 2018	180 Day
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Dec 06, 2018	14 Day
- Method: LTM-GEN-7080 Moisture			

	🔅 eur	ofins	mgt		ABN– 50 005 e.mail : Enviro web : www.eu	Sales@	eurofine	s.com	2 C F N	Phone : NATA #	ston To VIC 31 +61 3 8	564 500	se 00	16 Lai Ph	one : +61	ilding F vad West NSW 2066 1 2 9900 8400 61 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4 NATA # 1261 Site # 2	Kewdale WA 6105 600 Phone : +61 8 9251 9600	
Ac Pr	ompany Name: Idress: oject Name: oject ID:	GHD Pty Ltd Level 15, 13: Sydney NSW 2000 LINDFIELD 1 2127850	3 Castlereagl		ATER WELL INST	ΓALLA	Re Ph Fa			0	31640 2 923 2 923	9 710				Eurofi	Received: Due: Priority: Contact Name:	Dec 5, 2018 6:27 PM Dec 12, 2018 5 Day Emma Harrison Gervices Manager : Nibha Vaidya	
	Sample Detail				Asbestos - AS4964	HOLD	Iron	Polychlorinated Biphenyls	BTEX and Naphthalene	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	BTEXN and Volatile TRH	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)					
Mell	oourne Laborate	ory - NATA Site	# 1254 & 14	271															
Syd	ney Laboratory	- NATA Site # 1	8217			Х	х	Х	Х	Х	Х	Х	Х	Х	Х				
Bris	bane Laborator	y - NATA Site #	20794																
Pert	h Laboratory - I	NATA Site # 237	736																
Exte	ernal Laboratory	y.																	
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID														
1	BH2_0.1	Dec 04, 2018	THIE	Soil	S18-De06749	Х		x	х		x	x	X		x				
2	BH2_0.5	Dec 04, 2018		Soil	S18-De06750	1	1	X	X	1	X	X	X		X				
3	R1	Dec 04, 2018		Water	S18-De06751			x	Х		x	1	x		х				
4	BH2 0.4	Dec 04, 2018		Soil	S18-De06752	1	x			1		1	1	1					
5	BH2_1.0	Dec 04, 2018		Soil	S18-De06753	1	X			1		1	1	1					
6	BH2_1.5	Dec 04, 2018		Soil	S18-De06754		X			1		1							
7	BH2_2.0	Dec 04, 2018		Soil	S18-De06755		X			1		1							
8	BH2 2.5	Dec 04, 2018		Soil	S18-De06756	1	X			1		1	1	1					
9	BH2_3.0	Dec 04, 2018		Soil	S18-De06757		X			1		1							
9	BH2_3.0	Dec 04, 2018		Soll	S18-De06757		X												

🛟 eui		ngt	ABN– 50 005 (e.mail : Enviro web : www.eur	Sales@		s.com	2 0 P N	hone : + IATA # 1	ne ston Tov VIC 31 +61 3 85 1261 54 & 14	564 500	e 10	16 Lai Ph	dney It F3, Building F Mars Road ne Cove West NSW 20 one : +61 2 9900 8400 ITA # 1261 Site # 1821	Brisbane 1/21 Smallwood Place Murarie QLD 4172 966 Phone : +61 7 3902 46 NATA # 1261 Site # 20 7	
Company Name: Address: Project Name: Project ID:	GHD Pty Ltd NSW Level 15, 133 Castl Sydney NSW 2000 LINDFIELD VILLAG 2127850	ereagh Street SE HUB - GROUNDV	VATER WELL INST	TALLA	Re Ph Fa			0	31640 2 923 2 923	9 710			Eur	Received: Due: Priority: Contact Name: ofins mɑt Analvtical S	Dec 5, 2018 6:27 PM Dec 12, 2018 5 Day Emma Harrison ervices Manager : Nibha Vaidya
	Sample Detail				НОГД	Iron	Polychlorinated Biphenyls	BTEX and Naphthalene	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	BTEXN and Volatile TRH	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, NI, Mn, Se, Zn)		
Melbourne Laborat	tory - NATA Site # 1254	& 14271													
	/ - NATA Site # 18217			х	Х	Х	Х	х	Х	Х	Х	Х	x		
	ry - NATA Site # 20794														
	NATA Site # 23736														
10 BH2_3.5	Dec 04, 2018	Soil	S18-De06758		Х						<u> </u>		 		
11 BH2_4.0	Dec 04, 2018	Soil	S18-De06759		X								 		
12 BH2_4.5	Dec 04, 2018	Soil	S18-De06760		X								+		
13 BH2_5.0	Dec 04, 2018	Soil	S18-De06761		X								+		
14 BH2_5.5	Dec 04, 2018	Soil	S18-De06762		X X			<u> </u>			<u> </u>		+		
15 BH2_6.0 16 BH2_6.5	Dec 04, 2018	Soil Soil	S18-De06763		X								+		
16 BH2_6.5 17 BH2_7.0	Dec 04, 2018 Dec 04, 2018	Soil	S18-De06764 S18-De06765		X						-		+		
17 BH2_7.0 18 BH2_7.5	Dec 04, 2018	Soil	S18-De06766		X								+		
19 BH2_7.5	Dec 04, 2018	Soil	S18-De06767		X								+		
20 BH2_8.5	Dec 04, 2018	Soil	S18-De06768		X			<u> </u>			<u> </u>		+		
21 BH2 9.0	Dec 04, 2018	Soil	S18-De06769		X								+		
21 012_0.0	20004,2010		1010 200700	1				1	1		1		<u> </u>		

💸 eur	ofins	mgt	ABN– 50 005 e.mail : Envirc web : www.eu	Sales@	eurofine	s.com	2 C P N	Melbourr 2-5 Kings Dakleigh Phone : - NATA # Site # 12	ston Tov VIC 31 +61 3 8 1261	564 500	e 00	16 Lai Ph	one : +61	lding F ad West NSW 2066 2 9900 8400 61 Site # 18217	Brisbane 1/21 Smallwood Murarrie QLD 4 Phone : +61 7 3 NATA # 1261 S	172 3902 4600	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 960 4 NATA # 1261 Site # 23736	0
Company Name: Address: Project Name: Project ID:	Address: Level 15, 133 Castlereagh Street Sydney NSW 2000 Project Name: LINDFIELD VILLAGE HUB - GROUNDWATER WELL IN					der N port : ione: x:		0	3164(2 923 2 923	9 710				Eurofii	Received: Due: Priority: Contact Name ns mgt Analyti	ə:	Dec 5, 2018 6:27 PM Dec 12, 2018 5 Day Emma Harrison vices Manager : Nibha V	aidya
	Sample Detail				HOLD	Iron	Polychlorinated Biphenyls	BTEX and Naphthalene	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	BTEXN and Volatile TRH	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)					
Melbourne Laborato	ory - NATA Site	# 1254 & 14271																
Sydney Laboratory	- NATA Site # 1	8217		х	х	х	Х	x	х	Х	x	х	Х					
Brisbane Laborator																		
Perth Laboratory - N																		
22 BH2_9.5	Dec 04, 2018	Soi			X	<u> </u>												
23 BH2_10.0	Dec 04, 2018	Soi			X								+					
24 BH2_10.5	Dec 04, 2018	Soi			X								+					
25 BH2_11.0	Dec 04, 2018	Soi			X								+					
26 TRIP SPIKE	Dec 04, 2018	Soi		-				X					+					
27 TRIP BLANK	Dec 04, 2018	Soi										Х	+					
28 BH2_12.0	Dec 04, 2018	Soi			X								+					
29 BH2_13.5	Dec 04, 2018	Soi		-	X								+					
30 BH2_15	Dec 04, 2018	Soi	S18-De06814		X		_		-	_	-							
Test Counts				1	25	3	3	1	3	2	3	1	3					

Internal Quality Control Review and Glossary

General

1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Terma	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	Quality Systems Manual ver 5.1 US Department of Defense
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		4				
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank	1			1		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank					1 0.00	
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.1	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank	IIIg/Kg	<u> </u>		0.5	1 835	
Halogenated Volatile Organics						
1.1-Dichloroethane	mg/kg	< 0.5		0.5	Pass	
1.1-Dichloroethene	mg/kg	< 0.5		0.5	Pass	
1.1.1-Trichloroethane	mg/kg	< 0.5		0.5	Pass	
1.1.1.2-Tetrachloroethane		< 0.5		0.5	Pass	
1.1.2-Trichloroethane	mg/kg	< 0.5		0.5	Pass	
1.1.2.2-Tetrachloroethane	mg/kg	< 0.5		0.5	Pass	
	mg/kg	1				
1.2-Dibromoethane 1.2-Dichlorobenzene	mg/kg	< 0.5 < 0.5		0.5	Pass Pass	
1.2-Dichloroethane	mg/kg	< 0.5		0.5	Pass	
1.2-Dichloropropane	mg/kg					
	mg/kg	< 0.5		0.5	Pass	
1.2.3-Trichloropropane 1.3-Dichlorobenzene	mg/kg	< 0.5		0.5	Pass Pass	
	mg/kg	< 0.5		0.5		
1.3-Dichloropropane	mg/kg	< 0.5		0.5	Pass	
1.4-Dichlorobenzene	mg/kg	< 0.5		0.5	Pass	
Bromodichloromethane	mg/kg	< 0.5		0.5	Pass	
Bromoform	mg/kg	< 0.5		0.5	Pass	
Bromomethane	mg/kg	< 0.5		0.5	Pass	
Carbon Tetrachloride	mg/kg	< 0.5		0.5	Pass	
Chlorobenzene	mg/kg	< 0.5		0.5	Pass	
Chloroform	mg/kg	< 0.5		0.5	Pass	
Chloromethane	mg/kg	< 0.5		0.5	Pass	
cis-1.2-Dichloroethene	mg/kg	< 0.5	<u> </u>	0.5	Pass	
cis-1.3-Dichloropropene	mg/kg	< 0.5		0.5	Pass	
Dibromochloromethane	mg/kg	< 0.5		0.5	Pass	
Dibromomethane	mg/kg	< 0.5		0.5	Pass	
lodomethane	mg/kg	< 0.5		0.5	Pass	
Methylene Chloride	mg/kg	< 0.5		0.5	Pass	
Tetrachloroethene	mg/kg	< 0.5		0.5	Pass	
trans-1.2-Dichloroethene	mg/kg	< 0.5		0.5	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
trans-1.3-Dichloropropene	mg/kg	< 0.5		0.5	Pass	
Trichloroethene	mg/kg	< 0.5		0.5	Pass	
Trichlorofluoromethane	mg/kg	< 0.5		0.5	Pass	
Vinyl chloride	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank		1			-	
Polychlorinated Biphenyls						
Aroclor-1016	mg/kg	< 0.5		0.5	Pass	
Aroclor-1221	mg/kg	< 0.1		0.1	Pass	
Aroclor-1232	mg/kg	< 0.5		0.5	Pass	
Aroclor-1242	mg/kg	< 0.5		0.5	Pass	
Aroclor-1248	mg/kg	< 0.5		0.5	Pass	
Aroclor-1254	mg/kg	< 0.5		0.5	Pass	
Aroclor-1260	mg/kg	< 0.5		0.5	Pass	
Total PCB*	mg/kg	< 0.5		0.5	Pass	
Method Blank		I	1 1			
Heavy Metals	_					
Arsenic	mg/kg	< 2		2	Pass	
Beryllium	mg/kg	< 2		2	Pass	
Boron	mg/kg	< 10		10	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Cobalt	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Iron	mg/kg	< 20		20	Pass	
Lead	mg/kg	< 5		5	Pass	
Manganese	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Selenium	mg/kg	< 2		2	Pass	
Zinc	mg/kg	< 5		5	Pass	ļ
LCS - % Recovery						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	%	122		70-130	Pass	
TRH C6-C10	%	104		70-130	Pass	
TRH >C10-C16	%	90		70-130	Pass	
LCS - % Recovery						

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	IS				
TRH C6-C9	%	108	70-130	Pass	
TRH C10-C14	%	88	70-130	Pass	
LCS - % Recovery					
ВТЕХ					
Benzene	%	124	70-130	Pass	
Toluene	%	113	70-130	Pass	
Ethylbenzene	%	112	70-130	Pass	
m&p-Xylenes	%	114	70-130	Pass	
o-Xylene	%	114	70-130	Pass	
Xylenes - Total	%	114	70-130	Pass	
LCS - % Recovery			• • • • •		
Halogenated Volatile Organics					
1.1-Dichloroethene	%	85	70-130	Pass	
1.1.1-Trichloroethane	%	94	70-130	Pass	
1.2-Dichlorobenzene	%	109	70-130	Pass	
1.2-Dichloroethane	%	99	70-130	Pass	
Trichloroethene	%	90	70-130	Pass	
LCS - % Recovery	70	00	10 100	1 433	
Polycyclic Aromatic Hydrocarbons				1	
Acenaphthene	%	99	70-130	Pass	
Acenaphthylene	%	99	70-130	Pass	
Anthracene	%	103	70-130	Pass	
	%		70-130		
Benz(a)anthracene		100		Pass	
Benzo(a)pyrene	%	93	70-130	Pass	
Benzo(b&j)fluoranthene	%	91	70-130	Pass	
Benzo(g.h.i)perylene	%	98	70-130	Pass	
Benzo(k)fluoranthene	%	99	70-130	Pass	
Chrysene	%	92	70-130	Pass	
Dibenz(a.h)anthracene	%	96	70-130	Pass	
Fluoranthene	%	91	70-130	Pass	
Fluorene	%	104	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	96	70-130	Pass	
Naphthalene	%	94	70-130	Pass	
Phenanthrene	%	101	70-130	Pass	
Pyrene	%	92	70-130	Pass	
LCS - % Recovery				1	
Polychlorinated Biphenyls					
Aroclor-1260	%	100	70-130	Pass	
LCS - % Recovery				1	
Heavy Metals	-				
Arsenic	%	88	70-130	Pass	
Beryllium	%	109	70-130	Pass	
Boron	%	110	70-130	Pass	
Cadmium	%	97	70-130	Pass	
Chromium	%	113	70-130	Pass	
Cobalt	%	116	70-130	Pass	
Copper	%	119	70-130	Pass	
Iron	%	108	70-130	Pass	
Lead	%	115	70-130	Pass	
Manganese	%	101	70-130	Pass	
Mercury	%	125	70-130	Pass	
Nickel	%	116	70-130	Pass	
Selenium	%	85	70-130	Pass	
Zinc	%	103	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	A	cceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery					· · · ·			
Total Recoverable Hydrocarbor	ns - 2013 NEPM Fract	ions		Result 1				
TRH >C10-C16	S18-De06903	NCP	%	88		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbor	ns - 1999 NEPM Fract	ions		Result 1				
TRH C10-C14	S18-De06903	NCP	%	84		70-130	Pass	
Spike - % Recovery								
Polycyclic Aromatic Hydrocarb	ons			Result 1				
Acenaphthene	S18-De03657	NCP	%	99		70-130	Pass	
Acenaphthylene	S18-De03657	NCP	%	86		70-130	Pass	
Anthracene	S18-De03657	NCP	%	90		70-130	Pass	
Benz(a)anthracene	S18-De11458	NCP	%	100		70-130	Pass	
Benzo(a)pyrene	S18-De03657	NCP	%	122		70-130	Pass	
Benzo(b&j)fluoranthene	S18-De03657	NCP	%	77		70-130	Pass	
Benzo(g.h.i)perylene	S18-De11458	NCP	%	91		70-130	Pass	
Benzo(k)fluoranthene	S18-De11458	NCP	%	89		70-130	Pass	
Chrysene	S18-De11458	NCP	%	91		70-130	Pass	
Dibenz(a.h)anthracene	S18-De03657	NCP	%	85		70-130	Pass	
Fluoranthene	S18-De11458	NCP	%	91		70-130	Pass	
Fluorene	S18-De03657	NCP	%	102		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S18-De03657	NCP	%	73		70-130	Pass	
Naphthalene	S18-De03657	NCP	%	91		70-130	Pass	
Phenanthrene	S18-De03657	NCP	%	78		70-130	Pass	
Pyrene	S18-De11458	NCP	%	88		70-130	Pass	
Spike - % Recovery								
Heavy Metals				Result 1				
Arsenic	S18-De13679	NCP	%	84		70-130	Pass	
Beryllium	S18-De13679	NCP	%	94		70-130	Pass	
Cadmium	S18-De13679	NCP	%	80		70-130	Pass	
Chromium	S18-De13679	NCP	%	100		70-130	Pass	
Cobalt	S18-De13679	NCP	%	99		70-130	Pass	
Copper	S18-De13679	NCP	%	109		70-130	Pass	
Lead	S18-De13679	NCP	%	126		70-130	Pass	
Manganese	S18-De13679	NCP	%	101		70-130	Pass	
Mercury	S18-De13679	NCP	%	108		70-130	Pass	
Nickel	S18-De13679	NCP	%	99		70-130	Pass	
Selenium	S18-De13679	NCP	%	74		70-130	Pass	
Zinc	S18-De13679	NCP	%	121		70-130	Pass	
Spike - % Recovery				1	1 1			
Total Recoverable Hydrocarbor	ns - 2013 NEPM Fract	ions		Result 1				
Naphthalene	S18-De06750	CP	%	97		70-130	Pass	
Spike - % Recovery					1			
втех		,		Result 1				
Benzene	S18-De06750	CP	%	109		70-130	Pass	
Toluene	S18-De06750	CP	%	106		70-130	Pass	
Ethylbenzene	S18-De06750	CP	%	122		70-130	Pass	
m&p-Xylenes	S18-De06750	CP	%	118		70-130	Pass	
o-Xylene	S18-De06750	CP	%	112		70-130	Pass	
Xylenes - Total	S18-De06750	CP	%	116		70-130	Pass	
Spike - % Recovery					 TTT			
Halogenated Volatile Organics		,		Result 1				
1.1-Dichloroethene	S18-De06750	СР	%	111		70-130	Pass	
1.1.1-Trichloroethane	S18-De06750	CP	%	108		70-130	Pass	
1.2-Dichlorobenzene	S18-De06750	CP	%	110		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
1.2-Dichloroethane	S18-De06750	CP	%	106			70-130	Pass	
Trichloroethene	S18-De06750	CP	%	102			70-130	Pass	
Spike - % Recovery	•			•				•	
Polychlorinated Biphenyls				Result 1					
Aroclor-1260	S18-De13849	NCP	%	103			70-130	Pass	
Spike - % Recovery	•			•				•	
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1					
TRH C6-C10	S18-De04540	NCP	%	78			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1					
TRH C6-C9	S18-De04540	NCP	%	81			70-130	Pass	
		QA		-			Acceptance		Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S18-De12013	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S18-De15091	NCP	mg/kg	< 50	66	36	30%	Fail	Q15
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S18-De12013	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S18-De15091	NCP	mg/kg	29	38	26	30%	Pass	
TRH C15-C28	S18-De15091	NCP	mg/kg	100	150	38	30%	Fail	Q15
TRH C29-C36	S18-De15091	NCP	mg/kg	50	69	32	30%	Fail	Q15
Duplicate								•	
BTEX				Result 1	Result 2	RPD			
Benzene	S18-De12013	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S18-De12013	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S18-De12013	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S18-De12013	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S18-De12013	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S18-De12013	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate	010 2012010		iiig/itg	0.0	v 0.0		0070	1 400	
Halogenated Volatile Organics				Result 1	Result 2	RPD			
1.1-Dichloroethane	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1-Dichloroethene	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.1-Trichloroethane	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.1.2-Tetrachloroethane	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.2-Trichloroethane	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.2.2-Tetrachloroethane	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dibromoethane	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
		NCP					30%		
1.2-Dichlorobenzene	S18-De12013		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichloroethane	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1		Pass	
1.2-Dichloropropane	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2.3-Trichloropropane	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3-Dichlorobenzene	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3-Dichloropropane	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.4-Dichlorobenzene	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromodichloromethane	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromoform	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromomethane	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Carbon Tetrachloride	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chlorobenzene	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloroform	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloromethane	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Halogenated Volatile Organics				Result 1	Result 2	RPD			
cis-1.2-Dichloroethene	S18-De12013	NCP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
cis-1.3-Dichloropropene	S18-De12013	NCP	mg/kg mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromochloromethane	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromomethane	S18-De12013	NCP		< 0.5	< 0.5	<1	30%	Pass	
	S18-De12013	NCP	mg/kg			<1	30%		
Iodomethane			mg/kg	< 0.5	< 0.5			Pass	
Methylene Chloride	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Tetrachloroethene	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
trans-1.2-Dichloroethene	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
trans-1.3-Dichloropropene	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichloroethene	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichlorofluoromethane	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Vinyl chloride	S18-De12013	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				T	1		1		
Polycyclic Aromatic Hydrocarbor	าร			Result 1	Result 2	RPD			
Acenaphthene	S18-De03654	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S18-De03654	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S18-De03654	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S18-De03654	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S18-De03654	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S18-De03654	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S18-De03654	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S18-De03654	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S18-De03654	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S18-De03654	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S18-De03654	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S18-De03654	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S18-De03654	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S18-De03654	NCP		< 0.5	< 0.5	<1	30%	Pass	
			mg/kg						
Phenanthrene	S18-De03654	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S18-De03654	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				D 14	D KO				
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S18-De14373	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S18-De14373	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				T			1	-	
Heavy Metals	1			Result 1	Result 2	RPD			
Arsenic	S18-De12945	NCP	mg/kg	3.4	3.9	14	30%	Pass	
Beryllium	S18-De12945	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Boron	S18-De12945	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Cadmium	S18-De07641	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-De12945	NCP	mg/kg	13	16	19	30%	Pass	
Copper	S18-De12945	NCP	mg/kg	19	21	11	30%	Pass	
Iron	S18-De12945	NCP	mg/kg	38000	41000	6.0	30%	Pass	
Lead	S18-De12945	NCP	mg/kg	42	50	17	30%	Pass	
Manganese	S18-De12945	NCP	mg/kg	110	120	6.0	30%	Pass	
Mercury	S18-De12945	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S18-De12945	NCP	mg/kg	6.6	6.1	9.0	30%	Pass	
		1							
Selenium	S18-De12945	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Zinc	S18-De12945	NCP	mg/kg	59	69	16	30%	Pass	

Duplicate				_					
				Result 1	Result 2	RPD			
% Moisture	S18-De06750	CP	%	20	20	1.0	30%	Pass	

Comments

Eurofins | mgt accreditation number 1261, corporate site 1254 and 14271 is currently in progress of a controlled transition to a new custom built location at 6 Monterey Road, Dandenong South, Victoria 3175. All results on this report denoted as being performed by Eurofins | mgt 2-5 Kingston Town Close, Oakleigh Victoria 3166 corporate site 1254, will have been performed on either Oakleigh or new Dandenong South site.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles N01 (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

R20 This sample is a Trip Spike and therefore all results are reported as a percentage

Authorised By

Nibha Vaidya	Analytical Services Manager
Andrew Sullivan	Senior Analyst-Organic (NSW)
Gabriele Cordero	Senior Analyst-Metal (NSW)
Nibha Vaidya	Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mg shail not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg the liable for consequential damages including, but not limited to, lets produced avecing information for the report. The occurrent shall not be reported avec experiment damages including.

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Emma Harrison

mgt

Report Project name Project ID Received Date 631640-W LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTALLATION 2127850

FI0ject ID 212/030			
Received Date Dec 05, 2018			
Client Sample ID			R1
Sample Matrix			Water
Eurofins mgt Sample No.			S18-De06751
Date Sampled			Dec 04, 2018
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 N	EPM Fractions		
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-36 (Total)	0.1	mg/L	< 0.1
BTEX			
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	96
Halogenated Volatile Organics			
1.1-Dichloroethane	0.001	mg/L	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001
1.2-Dibromoethane	0.001	mg/L	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001
Bromodichloromethane	0.001	mg/L	< 0.001
Bromoform	0.001	mg/L	< 0.001
Bromomethane	0.001	mg/L	< 0.001
Carbon Tetrachloride	0.001	mg/L	< 0.001
Chlorobenzene	0.001	mg/L	< 0.001
Chloroform	0.005	mg/L	< 0.005
Chloromethane	0.001	mg/L	< 0.001

Client Sample ID			R1
Sample Matrix			Water
•			
Eurofins mgt Sample No.			S18-De06751
Date Sampled			Dec 04, 2018
Test/Reference	LOR	Unit	
Halogenated Volatile Organics			
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001
Dibromomethane	0.001	mg/L	< 0.001
Iodomethane	0.001	mg/L	< 0.001
Methylene Chloride	0.001	mg/L	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001
Trichloroethene	0.001	mg/L	< 0.001
Trichlorofluoromethane	0.001	mg/L	< 0.001
Vinyl chloride	0.001	mg/L	< 0.001
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005
4-Bromofluorobenzene (surr.)	1	%	96
Toluene-d8 (surr.)	1	%	101
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions		
Naphthalene ^{N02}	0.01	mg/L	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1
Polycyclic Aromatic Hydrocarbons	L		
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)	1	%	78
p-Terphenyl-d14 (surr.)	1	%	88

Client Sample ID			R1
Sample Matrix			Water
Eurofins mgt Sample No.			S18-De06751
Date Sampled			Dec 04, 2018
Test/Reference	LOR	Unit	
Polychlorinated Biphenyls			
Aroclor-1016	0.005	mg/L	< 0.005
Aroclor-1221	0.001	mg/L	< 0.001
Aroclor-1232	0.005	mg/L	< 0.005
Aroclor-1242	0.005	mg/L	< 0.005
Aroclor-1248	0.005	mg/L	< 0.005
Aroclor-1254	0.005	mg/L	< 0.005
Aroclor-1260	0.005	mg/L	< 0.005
Total PCB*	0.001	mg/L	< 0.001
Dibutylchlorendate (surr.)	1	%	79
Tetrachloro-m-xylene (surr.)	1	%	65
Heavy Metals			
Arsenic	0.001	mg/L	< 0.001
Beryllium	0.001	mg/L	< 0.001
Boron	0.05	mg/L	< 0.05
Cadmium	0.0002	mg/L	< 0.0002
Chromium	0.001	mg/L	< 0.001
Cobalt	0.001	mg/L	< 0.001
Copper	0.001	mg/L	< 0.001
Iron	0.05	mg/L	< 0.05
Lead	0.001	mg/L	< 0.001
Manganese	0.005	mg/L	< 0.005
Mercury	0.0001	mg/L	< 0.0001
Nickel	0.001	mg/L	< 0.001
Selenium	0.001	mg/L	< 0.001
Zinc	0.005	mg/L	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

mgt

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Dec 11, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Dec 06, 2018	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 06, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Eurofins mgt Suite B4			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 11, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Dec 11, 2018	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Halogenated Volatile Organics	Sydney	Dec 06, 2018	7 Day
- Method: E016 Volatile Halogenated Compounds (VHC)			
Polychlorinated Biphenyls	Sydney	Dec 11, 2018	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)	Sydney	Dec 11, 2018	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Heavy Metals	Sydney	Dec 11, 2018	180 Day
- Method: I TM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS

	🔅 eur	ofins	mgt		ABN– 50 005 i e.mail : Enviro web : www.eu	Sales@	eurofins	s.com	2 C P	felboun -5 King: Dakleigh Phone : IATA # Site # 12	ston To VIC 31 +61 3 8	564 500	e 10	16 Lai Ph	one : +61	ilding F bad West NSW 2066 1 2 9900 8400 61 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4 NATA # 1261 Site # 2	Kewdale WA 6105 600 Phone : +61 8 9251 9600	
Ac Pr	Company Name: GHD Pty Ltd NSW Address: Level 15, 133 Castlereagh Street Sydney NSW 2000 Project Name: LINDFIELD VILLAGE HUB - GROUNDWATER WELL IN Project ID: 2127850							der N port : ione: x:		0	3164(2 923 2 923	9 710				Eurofir	Received: Due: Priority: Contact Name: ns I mot Analytical S	Dec 5, 2018 6:27 PM Dec 12, 2018 5 Day Emma Harrison Services Manager : Nibha Vaidya	
	Sample Detail				Asbestos - AS4964	HOLD	Iron	Polychlorinated Biphenyls	BTEX and Naphthalene	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	BTEXN and Volatile TRH	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)					
Melt	oourne Laborate	ory - NATA Site	# 1254 & 14	271															
Syd	ney Laboratory	- NATA Site # 1	8217			Х	х	Х	Х	Х	Х	Х	Х	Х	Х				
Bris	bane Laborator	y - NATA Site #	20794																
Pert	h Laboratory - I	NATA Site # 237	736																
Exte	rnal Laboratory	/																	
No																			
1	BH2_0.1	Dec 04, 2018		Soil	S18-De06749	х		x	х		X	х	x		x				
2	 BH2_0.5	Dec 04, 2018		Soil	S18-De06750			х	х		Х	Х	X		Х				
3	 R1	Dec 04, 2018		Water	S18-De06751			х	х		Х		X		Х				
4	BH2_0.4	Dec 04, 2018		Soil	S18-De06752		х												
5	BH2_1.0	Dec 04, 2018		Soil	S18-De06753		х												
6	BH2_1.5	Dec 04, 2018		Soil	S18-De06754		х												
7	 BH2_2.0	Dec 04, 2018		Soil	S18-De06755		х												
8	BH2_2.5	Dec 04, 2018		Soil	S18-De06756		х			1									
				Soil	S18-De06757		х		1	1						1			
9	BH2_3.0	Dec 04, 2018		Soil	S18-De06757		X												

🛟 eui		ngt	ABN– 50 005 (e.mail : Enviro web : www.eur	Sales@		s.com	2 0 P N	hone : + IATA # 1	ne ston Tov VIC 31 +61 3 85 1261 54 & 14	564 500	e 10	16 Lai Ph	dney It F3, Building F Mars Road ne Cove West NSW 20 one : +61 2 9900 8400 ITA # 1261 Site # 1821	Brisbane 1/21 Smallwood Place Murarie QLD 4172 966 Phone : +61 7 3902 46 NATA # 1261 Site # 20 7	
Company Name: Address: Project Name: Project ID:	Address: Level 15, 133 Castlereagh Street Sydney NSW 2000 Project Name: LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTRUCTION							0	31640 2 923 2 923	9 710			Eur	Received: Due: Priority: Contact Name: ofins mɑt Analvtical S	Dec 5, 2018 6:27 PM Dec 12, 2018 5 Day Emma Harrison ervices Manager : Nibha Vaidya
	Sample Detail				НОГД	Iron	Polychlorinated Biphenyls	BTEX and Naphthalene	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	BTEXN and Volatile TRH	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, NI, Mn, Se, Zn)		
Melbourne Laborat	tory - NATA Site # 1254	& 14271													
	/ - NATA Site # 18217			х	Х	Х	Х	х	Х	Х	Х	Х	x		
	ry - NATA Site # 20794														
	NATA Site # 23736														
10 BH2_3.5	Dec 04, 2018	Soil	S18-De06758		Х						<u> </u>		 		
11 BH2_4.0	Dec 04, 2018	Soil	S18-De06759		X								 		
12 BH2_4.5	Dec 04, 2018	Soil	S18-De06760		X								+		
13 BH2_5.0	Dec 04, 2018	Soil	S18-De06761		X								+		
14 BH2_5.5	Dec 04, 2018	Soil	S18-De06762		X X			<u> </u>			<u> </u>		+		
15 BH2_6.0 16 BH2_6.5	Dec 04, 2018	Soil Soil	S18-De06763		X								+		
16 BH2_6.5 17 BH2_7.0	Dec 04, 2018 Dec 04, 2018	Soil	S18-De06764 S18-De06765		X			-			-		+		
17 BH2_7.0 18 BH2_7.5	Dec 04, 2018	Soil	S18-De06766		X								+		
19 BH2_7.5	Dec 04, 2018	Soil	S18-De06767		X								+		
20 BH2_8.5	Dec 04, 2018	Soil	S18-De06768		X			<u> </u>			<u> </u>		+		
21 BH2 9.0	Dec 04, 2018	Soil	S18-De06769		X								+		
21 012_0.0	20004,2010		1010 200700	1				1	1		1		<u> </u>		

💸 eur	ofins	mgt	ABN– 50 005 e.mail : Envirc web : www.eu	Sales@	eurofine	s.com	2 C P N	Melbourr 2-5 Kings Dakleigh Phone : - NATA # Site # 12	ston Tov VIC 31 +61 3 8 1261	564 500	e 00	16 Lai Ph	one : +61	lding F ad West NSW 2066 2 9900 8400 61 Site # 18217	Brisbane 1/21 Smallwood Murarrie QLD 4 Phone : +61 7 3 NATA # 1261 S	172 3902 4600	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 960 4 NATA # 1261 Site # 23736	0
Company Name: Address: Project Name: Project ID:	Address: Level 15, 133 Castlereagh Street Sydney NSW 2000 Project Name: LINDFIELD VILLAGE HUB - GROUNDWATER WELL INST						lo.: #:	0	3164(2 923 2 923	9 710				Eurofii	Received: Due: Priority: Contact Name ns mgt Analyti	ə:	Dec 5, 2018 6:27 PM Dec 12, 2018 5 Day Emma Harrison vices Manager : Nibha V	aidya
	Sample Detail				HOLD	Iron	Polychlorinated Biphenyls	BTEX and Naphthalene	Halogenated Volatile Organics	Moisture Set	Eurofins mgt Suite B4	BTEXN and Volatile TRH	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)					
Melbourne Laborato	ory - NATA Site	# 1254 & 14271																
Sydney Laboratory	- NATA Site # 1	8217		х	х	х	Х	x	х	Х	x	х	Х					
Brisbane Laborator																		
Perth Laboratory - N																		
22 BH2_9.5	Dec 04, 2018	Soi			Х	<u> </u>												
23 BH2_10.0	Dec 04, 2018	Soi			X								+					
24 BH2_10.5	Dec 04, 2018	Soi			X								+					
25 BH2_11.0	Dec 04, 2018	Soi			X								+					
26 TRIP SPIKE	Dec 04, 2018	Soi		-				X					+					
27 TRIP BLANK	Dec 04, 2018	Soi										Х	+					
28 BH2_12.0	Dec 04, 2018	Soi			X								+					
29 BH2_13.5	Dec 04, 2018	Soi		-	X								+					
30 BH2_15	Dec 04, 2018	Soi	S18-De06814		X		_		-	_	-							
Test Counts				1	25	3	3	1	3	2	3	1	3					

Internal Quality Control Review and Glossary

General

1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

	CIIII3	
D	ry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
L	OR	Limit of Reporting.
S	PIKE	Addition of the analyte to the sample and reported as percentage recovery.
R	PD	Relative Percent Difference between two Duplicate pieces of analysis.
L	cs	Laboratory Control Sample - reported as percent recovery.
С	RM	Certified Reference Material - reported as percent recovery.
N	lethod Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
S	urr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
D	uplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
U	ISEPA	United States Environmental Protection Agency
A	PHA	American Public Health Association
т	CLP	Toxicity Characteristic Leaching Procedure
С	:OC	Chain of Custody
S	RA	Sample Receipt Advice
Q	SM	Quality Systems Manual ver 5.1 US Department of Defense
С	P	Client Parent - QC was performed on samples pertaining to this report
Ν	ICP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
т	EQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	6				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank					
Halogenated Volatile Organics					
1.1-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.1-Dichloroethene	mg/L	< 0.001	0.001	Pass	
1.1.1-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.1.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dibromoethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.2-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.3-Trichloropropane	mg/L	< 0.001	0.001	Pass	
1.3-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.4-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
Bromodichloromethane	mg/L	< 0.001	0.001	Pass	
Bromoform	mg/L	< 0.001	0.001	Pass	
Bromomethane	mg/L	< 0.001	0.001	Pass	
Carbon Tetrachloride	mg/L	< 0.001	0.001	Pass	
Chlorobenzene	mg/L	< 0.001	0.001	Pass	
Chloroform	mg/L	< 0.005	0.005	Pass	
Chloromethane	mg/L	< 0.001	0.001	Pass	
cis-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Dibromochloromethane	mg/L	< 0.001	0.001	Pass	
Dibromomethane	mg/L	< 0.001	0.001	Pass	
lodomethane	mg/L	< 0.001	0.001	Pass	
Methylene Chloride	mg/L	< 0.001	0.001	Pass	
Tetrachloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Trichloroethene	mg/L	< 0.001	0.001	Pass	
Trichlorofluoromethane	mg/L	< 0.001	0.001	Pass	
Vinyl chloride	mg/L	< 0.001	0.001	Pass	
Method Blank	mg/L			1 400	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/L	< 0.01	0.01	Pass	

Test	Units	Result 1	Accepta Limit		Qualifying Code
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank		.			
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	<u> </u>
Fluorene	mg/L	< 0.001	0.001	Pass	<u> </u>
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank		1			
Polychlorinated Biphenyls					
Aroclor-1016	mg/L	< 0.005	0.005	5 Pass	
Aroclor-1221	mg/L	< 0.001	0.001	Pass	
Aroclor-1232	mg/L	< 0.005	0.005	5 Pass	
Aroclor-1242	mg/L	< 0.005	0.005	5 Pass	
Aroclor-1248	mg/L	< 0.005	0.005	5 Pass	
Aroclor-1254	mg/L	< 0.005	0.005	5 Pass	
Aroclor-1260	mg/L	< 0.005	0.005		
Total PCB*	mg/L	< 0.001	0.001	Pass	
Method Blank		1 I			
Heavy Metals					
Arsenic	mg/L	< 0.001	0.001	Pass	
Beryllium	mg/L	< 0.001	0.001	Pass	
Boron	mg/L	< 0.05	0.05	Pass	
Cadmium	mg/L	< 0.0002	0.000	2 Pass	
Chromium	mg/L	< 0.001	0.001		
Cobalt	mg/L	< 0.001	0.001		
Copper	mg/L	< 0.001	0.001		
Iron	mg/L	< 0.05	0.05		
Lead	mg/L	< 0.001	0.001		
Manganese	mg/L	< 0.005	0.005		<u> </u>
Mercury	mg/L	< 0.0001	0.000		<u> </u>
Nickel	mg/L	< 0.001	0.001		<u> </u>
Selenium	mg/L	< 0.001	0.001		
Zinc	mg/L	< 0.005	0.005	5 Pass	
LCS - % Recovery		1			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	73	70-13		
TRH C10-C14	%	126	70-13	0 Pass	
LCS - % Recovery					L
BTEX					

Test	Units	Result 1	Acceptance Limits	e Pass Limits	Qualifying Code
Benzene	%	90	70-130	Pass	
Toluene	%	89	70-130	Pass	
Ethylbenzene	%	103	70-130	Pass	
m&p-Xylenes	%	102	70-130	Pass	
o-Xylene	%	98	70-130	Pass	
Xylenes - Total	%	100	70-130	Pass	
LCS - % Recovery		4			
Halogenated Volatile Organics					
1.1-Dichloroethene	%	89	70-130	Pass	
1.1.1-Trichloroethane	%	93	70-130	Pass	
1.2-Dichlorobenzene	%	93	70-130	Pass	
1.2-Dichloroethane	%	98	70-130	Pass	
Trichloroethene	%	87	70-130	Pass	
LCS - % Recovery	/0	07	70-130	F 855	
	tiona			1	
Total Recoverable Hydrocarbons - 2013 NEPM Frac		402	70.400	Date	
Naphthalene	%	103	70-130	Pass	
TRH C6-C10	%	76	70-130	Pass	
TRH >C10-C16	%	128	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthylene	%	74	70-130	Pass	
Anthracene	%	86	70-130	Pass	
Benz(a)anthracene	%	82	70-130	Pass	
Benzo(a)pyrene	%	79	70-130	Pass	
Benzo(b&j)fluoranthene	%	81	70-130	Pass	
Benzo(g.h.i)perylene	%	88	70-130	Pass	
Benzo(k)fluoranthene	%	80	70-130	Pass	
Chrysene	%	81	70-130	Pass	
Dibenz(a.h)anthracene	%	87	70-130	Pass	
Fluoranthene	%	79	70-130	Pass	
Fluorene	%	75	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	88	70-130	Pass	
Naphthalene	%	72	70-130	Pass	
Phenanthrene	%	81	70-130	Pass	
Pyrene	%	80	70-130	Pass	
LCS - % Recovery	70	00		1 400	
Polychlorinated Biphenyls				T	
Aroclor-1260	%	78	70-130	Pass	
LCS - % Recovery	70	1 10	10 100	1 435	
Heavy Metals				T	
Arsenic	%	89	70-130	Pass	
Beryllium	%	113	70-130	Pass	
Boron	%	108	70-130	Pass	
Cadmium	%	88	70-130	Pass	
Chromium	%	106	70-130	Pass	
Cobalt	%	109	70-130	Pass	
Copper	%	111	70-130	Pass	
Iron	%	102	70-130	Pass	
Lead	%	110	70-130	Pass	
Manganese	%	94	70-130	Pass	
Mercury	%	101	70-130	Pass	
Nickel	%	110	70-130	Pass	
Selenium	%	84	70-130	Pass	
Zinc	%	97	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S18-De11219	NCP	%	88			70-130	Pass	
Beryllium	S18-De11219	NCP	%	99			70-130	Pass	
Boron	S18-De11219	NCP	%	104			70-130	Pass	
Cadmium	S18-De11219	NCP	%	85			70-130	Pass	
Chromium	S18-De11219	NCP	%	106			70-130	Pass	
Cobalt	S18-De11219	NCP	%	108			70-130	Pass	
Copper	S18-De11219	NCP	%	111			70-130	Pass	
Iron	S18-De11219	NCP	%	102			70-130	Pass	
Lead	S18-De11219	NCP	%	110			70-130	Pass	
Manganese	S18-De11219	NCP	%	94			70-130	Pass	
Mercury	S18-De11219	NCP	%	124			70-130	Pass	
Nickel	S18-De11219	NCP	%	109			70-130	Pass	
Selenium	S18-De11219	NCP	%	83			70-130	Pass	
Zinc	S18-De11219	NCP	%	96			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S18-De11224	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Beryllium	S18-De11224	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Boron	S18-De12993	NCP	mg/L	0.06	0.05	20	30%	Pass	
Cadmium	S18-De08591	NCP	mg/L	0.0007	0.0008	5.0	30%	Pass	
Chromium	S18-De11224	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cobalt	S18-De11224	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper				0.004	. 0. 004	<1	200/	Deve	
	S18-De12993	NCP	mg/L	< 0.001	< 0.001		30%	Pass	
Iron	S18-De12993 S18-De11224	NCP NCP	mg/L mg/L	< 0.001	< 0.001	<1	30%	Pass Pass	
••									
Iron	S18-De11224	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Iron Lead	S18-De11224 S18-De11224	NCP NCP	mg/L mg/L	< 0.05 < 0.001	< 0.05 < 0.001	<1 <1	30% 30%	Pass Pass	
Iron Lead Manganese	S18-De11224 S18-De11224 S18-De11224	NCP NCP NCP	mg/L mg/L mg/L	< 0.05 < 0.001 < 0.005	< 0.05 < 0.001 < 0.005	<1 <1 <1	30% 30% 30%	Pass Pass Pass	
Iron Lead Manganese Mercury	S18-De11224 S18-De11224 S18-De11224 S18-De11224 S18-De12993	NCP NCP NCP NCP	mg/L mg/L mg/L mg/L	< 0.05 < 0.001 < 0.005 < 0.0001	< 0.05 < 0.001 < 0.005 < 0.0001	<1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	

Comments

Eurofins | mgt accreditation number 1261, corporate site 1254 and 14271 is currently in progress of a controlled transition to a new custom built location at 6 Monterey Road, Dandenong South, Victoria 3175. All results on this report denoted as being performed by Eurofins | mgt 2-5 Kingston Town Close, Oakleigh Victoria 3166 corporate site 1254, will have been performed on either Oakleigh or new Dandenong South site.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Nibha Vaidya Andrew Sullivan Gabriele Cordero

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Analytical Services Manager

Senior Analyst-Metal (NSW)

Senior Analyst-Organic (NSW)

Eurofins | mg shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg the liable for consequential damages including, but not limited to, lets products, damages for dadines and to start for motion or interpretation given in this report. In no case shall Eurofins | mg the liable for consequential damages including, but not be reproduced exection to the reproduced execpt in full and report limits execpt in full and report limits execpt in full and report limits execpt in full and report.

eurofins mgt

Unit F3 - 6 Building F, 16 Mars Road, Lane Cove Phone: +612 9900 8400 Email: enviro.syd@mgtlabmark.com.au

Brisbane

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: enviro.bris@mgtiabmark.com.au Melbourne

2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: enquiries.meib@mgtlabmark.com.au

mappenty Marter: Option: Page:// or Page:// or Isee Address: Project fames: 1cm/state Option: PROJECT Names: 1:::::::::::::::::::::::::::::::::::	LIENT DETAILS						_					JH/	AIN	0	- C	US	Ю	DY	REC	OR	D										
Bits & Adverse : Medic Banger : Emma Marking PDU/EXT Numer: 11/2563 Extended in adverse : DD Banger : Level 16, 132 Caddrager Break System Real for results : (my num Agged Loom - wina Spendood) (M Loom - State Stat		Sydney		Cont	tact N	Vame	: Terr	/ Nham				-	-	_		_	Pure	hace (rdor .	_	_							Page	1	of	
Lower 10, 103 Continuency Street. Synthesing of contract means 2014 PROJECT Nume: Location Development in 100000 Earling of contract means 2014 Analysis Some common holding lanes (with x contract means) PROJECT Nume: Location Some common holding lanes (with x contract means 2014) Intel Provide Intel Common State Analysis Some common holding lanes (with x contract means 2014) The Contract means 2014 The Contract means 2014 Intel Provide Intel Common State Some common holding lanes (with x contract means 2014) The Contract means 2014 The Contract means 2014 The Contract means 2014 Intel Provide Intel Common State The Contract means 2014 Intel Provide Intel Common State The Contract means 2014	Office Address :			_	_		_		deen		_				_		1									COC NU	mber :			/	
Note: Note: Note: District Name: Distrit Name: Dis		troot Sude	NOW DOOD		_													•								Eurofin	s mgt q	uote ID : (GHD I	Rates 2018	
Set of the identification control to be to be the set of the identification control to be to be the set of the identification control to be to be the set of the identification control to be the set of the set o	Lover 10, 100 Castlereagn 5	ueer, syaney	NSW 2000	Emai	II for	resul	ts : te	rry.nhar	n@ghd	.com e	emma	.harris	ion@g	jhd.co	m		PRO.	JECTN	lame :	indfiel	d					Data ou	lput form	nat: ESDA	Т		
Water Solid With Work Solid Solid Total Work Solid With Work												Anal	lytes										So	me comn	ion holdin	g times (v	ith corre	ect preserv	vation).	
Image: Sample D Data Mark Mark Data Mark Data Mark Data	pecial Directions & Comments	:										1 1				1)A/atom		or further	nformation	contact t				
TH: PAR, Particle 9: 700 TC: PAR, Partic																					-			,					Soils		
Image: Simple Indianameter:								A																idee							14 da
with a legicity bit water batch wontier: Sample continents: GALL With a legicity bit water batch wontier:								R															nois, Pesu	ades				enols, Pest	ticides		14 da
with a legicity bit water batch wontier: Sample continents: GALL With a legicity bit water batch wontier:				15				6			8		- 1													Tibury					6 mor
after legith water batch number: 0 00 totale batch number: 0 00 total batch number: 0				0						- 19	1		1	- 91									esting	_		-					28 da
affer (mg f) Waser batch number: i				Ŧ	1			2																N	-	NINGIGI		testing			72 ho
american masker: masker mas								12																						_	
Sample D Date Matrix Signal Description Sample comments: 1 AHD_AH1 HHC/B A A A A A A A A A A A A A A A A A A A	rofins mgt DI water batch numbe] 🖌	BS		1	6			1																	rield and Fi	OX, C	rS	
1 HD -H1 H1/2/18 Jar Bag 2 HD -H1 H1/2/18 H H Jar Bag 2 HD -H1 H H H Jar Bag 2 HD -H1 H H H Jar Bag 2 HD -H1 H H Jar Bag H 2 HD -H1 H H Jar Jar Bag 2 H H H H Jar Jar Bag 3 H H H H Jar Jar Bag 4 H H H Jar Jar Jar Jar 4 H H H Jar Jar Jar Jar Jar 6 Jar					aŭ			2	1																/ uays	ASLP	TCLP				7 days
1 HD -H1 H1/2/18 Jar Bag 2 HD -H1 H1/2/18 H H Jar Bag 2 HD -H1 H H H Jar Bag 2 HD -H1 H H H Jar Bag 2 HD -H1 H H Jar Bag H 2 HD -H1 H H Jar Jar Bag 2 H H H H Jar Jar Bag 3 H H H H Jar Jar Bag 4 H H H Jar Jar Jar Jar 4 H H H Jar Jar Jar Jar Jar 6 Jar	Sample ID	Date	Matrix	Ξ	ŝ	ç	<u></u>	a st	-												Containe	ers:		_					-		
1 CHD_HH21 High X X Image: Control of the control				Ĕ	ŝ	2	5 1	5 12															60P	11.4	40ml via	1 200ml 4	Sample c				omments:
a CHI - SHLA A X X X A A A A A A A A A A A A A A A A A A A	1 GHD-BH1	14/2/18	Late	1	×	×	~															2001		I ILM			Jar	Bag		_	
a Entra		1		1 1	×	\times	$\boldsymbol{\times}$														1								+-		
a Tric A A A A A A A A A A A A A A A A A A A					×	×	× 7	<								1		_			11							+	+-		
s 0 2 1 2 1 1 2 1	and it is a second s			10	×	XD	×													-	1				-		<u> </u>	+	+		
a Implify the form of the form o	and the second se			X	×										3					-	1			-					-		
a mp block a						et	eno	170	A	45	in	15 .	att	20/	00	10	30	V		-			7.	-					-		_
a Turn around time Method Of Shipment a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a				×	×	X	$\langle \rangle$																			1			+	_	
a a			1	1				X								-													+		_
a a		¥	~					X								1				-				-	-				+-		
a a	10						_								-														+		
a	11												-	+	-	+													-		
A A A A A A B A Image: A <	12												-	+	+	+			+-+							-	—		-		
Same Laboratory Staff Turn around time Nethod Of Shipment Temperature on arrival: ature: 1/4//1/8 Date & Time : 1/4//1/8 1/4//18 1/4//18 1/4//18 1/4//18 1/4//18 1/4//18 1/4//18 1/4//18 1/4//18 1/4//18 1/4//18 1/4//18 1/4//18	13									-			-	-	-			-	+ +										-	_	
Laboratory Staff Turn around time nquished By: Terry Nham - GHD Received By: Method Of Shipment ature: Image: 14/12/18 Bignature: Signature: Signature: </td <td>14</td> <td></td> <td>-</td> <td></td> <td>+</td> <td></td> <td></td> <td>++</td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>l</td> <td></td> <td>-</td> <td></td> <td>_</td>	14													-		+			++		+						l		-		_
Laboratory Staff Turn around time Method Of Shipment nquished By: Terry Nham - GHD & Time: 14/12/18 Date & Time: 14/12/18 Date & Time: 14/12/18 Signature: 10 DAY Objector 0 ther:	15				-					-			-	+				-	+ +								<u> </u>		_		
Inquished By: Terry Nham - GHD Received By: Image: Courier & Time : 14/12/18 Date & Time : 14/10/12 Date & Time : 14/10/12 10 DaY 3 DAY ature: Signature: 10 DAY 0 ther: X09_R0 Issue Date: 25 February 2013 Page 1 of 1	16																			-									+		
& Time: 14/12/18 Date & Time: 14/10/18 Date & Time: 14/10/18 I DAY 2 DAY I DAY 2 DAY I DAY 3 DAY I DAY	inquished By: Terry Nham	GHD	Receiv	ed By:		Labo	orato	y Staff							Tu	rn aro	und tin	ne	<u> </u>					Method O	f Shipmer	it			Ten	nperature or	n arrival:
& Time: 14/12/18 Date & Time: 14/10 2 DAY 3 DAY Hand Delivered Report number: ature: Signature: Signature: Date & Time: 10 DAY Other: Other: G 3 3 7 3 NO9_R0 Issue Date: 25 February 2013 Page 1 of 1 Page 1 of 1 Signature:	, and provery relation	Onb		ou by.	e	57	N	A	7																				1		
Ature: Signature: Day 10 Day Other: Hand Delivered Report number: Ature: Signature: Day 10 Day Other: Other: Postal Courier Consignment #: Signature: Day 10 Day Other: Other: G 3 3 7 7 1000000000000000000000000000000	e & Time : 14/1	0	Date &	Time '		11	1.	$\overline{}$				1 DAY		2 D]	3 DAY	Π													
Signature: Signature: Signature: Signature: Signature: Courier Consignment #: Courier Consignment #: X09_R0 Issue Date: 25 February 2013 Page 1 of 1 Fage 1 of 1 Fage 1 of 1	TIM	8				4		2	10	2		1						_					ed						Rep	ort number	
V09_R0 Issue Date: 25 February 2013 Page 1 of 1	nature:	2	Signate	Ire.	-	1	1 1	~	1.2	-01	m	DAY	X	10	DAY		Other:				Pos	tal									
DOB_RO Issue Date: 25 February 2013 Page 1 of 1	del	2	Signatt	. (D.	1	Ac	5			1										Courier C	onsignm	ent # :						6	33	千71
Salk Pah				<	X	n	-CX	X				_																	ľ	00	1 - 1
Luiplie House	3009_R0 Issue Date: 25	ebruary 2013	Page	1 of 1																				st.	I C		D. 1	A	_		
Wildle House																									111	X 1	~ (P	6 /			
																									411	m h	0 1	100	0	2-	

* TEloui	ALS	CHAIN O CUSTOD ALS Laborator please tick	Ph: 08 83 Ph: 08 83 Ph: 07 32 Ph: 07 34 Ph: 07 34	IDE 21 Burma Road Po 59 0890 E: adelaide@r NNE 32 Shand Street S 43 7222 E: samples.br TONE 46 Cailemondat 71 5600 E: gladstone@	alsglobal.com Stafford QLD 4053 risbane@alsglobal.com h Drive Clinton QLD 468	Ph: 0 DMB Ph: 0 0 DML	ACKAY 78 Harbi 17 4944 0177 E: ELBOURNE 2-4 03 8549 9600 E: JDGEE 27 Sydn 12 6372 6735 E:	mackay@alsgl Westali Road S samples.melbc ev Road Mudge	obal.com opringvale VIC 3 urne@alsglobal e NSW 2850	Ph: 171 با ا.com Ph	02 4968 9433 E: NOWRA 4/13 Gei 1: 024423 2063 E: PERTH 10 Hod V	ose Gum Road Wi samples.newcastl ary Place North No nowra@alsglcbal Vay Malaga WA 6 :: samples.perth@	owra NSW 2541 .com 090		Ph: 02 8784 □TOWNSVI Ph: 07 4796	277-289 Woodpar 8555 E: samples. LLE 14-15 Desm 0600 E: townesvill 3CNG 99 Kenny 3 3125 E: portkemb	sydney@alsglo a Court Bohle Q e.environmental@	/bal.com RLD 4818 @alsglobal.com
	GHD Pty Ltd					IT Stan	dard TAT (Li	st due date):				FOR	ABORATO	RY USE ON		$\partial \hat{\mathbf{f}}^{(r)}$	ينهو الملار الأر
OFFICE;				(Standard TAT r some tests e.g.	may be longer for . Ultra Trace	🗆 Non	Standard or	urgent TAT (List due dat	te):			NT .	y Seal Intact?	and the second second		Yes	No N/A
	: 21-27850			ALS QUOTE	NO.:	EN/005/	18			COC SE	QUENCE NUM	BER (Circle)	- b.		Constant and	upon receipt?	Contraction of the	No NA
ORDER N									co		2 3 4	56		7 - M	perature on R			-ic A
	MANAGER: Emma H	larrison	CONTACT	PH: 02 9239 791	10 / 0408 401 511				0	F: 🖌) 2	2 3 4	56	1 3	bein .	t H Tri	Strate 1	,÷*	
	: Terry Nham		SAMPLER	MOBILE: 0403 2	251 883	RELINQU	SHED BY:		RE	CEIVED BY:	1 A CB		RELINQUIS			DEOE	IVED BY:	
	led to ALS? (YES /			AT (or default):		Terry Nha	m (GHD	A	2	the	y / v ~ j						Sal P.	a Patin
	orts to: emma.harriso		rry.nham@ghd.com			DATE/TIM	EL L	2	DA				DATE/TIME:			DATE	TIME:	
	ice to (will default to P					191	12/1	p		14	f [[2	-				141	12118	1:28 m
COMMENT	SISPECIAL HANDLIN	IG/STORAGE OR D	ISPOSAL:														377	
ALS		SAMPLE MATRIX: SOLID			CONTAINE	R INFORM				ANAL Where Metal	YSIS REQUIR s are required,	ED including S specify Total (I	UITES (NB. Suit	e Codes must equired) or Dis	be listed to at solved (field t	rant suite price	2)	
LAB ID	SAMPI		DATE / TIME	MATRIX	TYPE & PRESE (refer to code			X TRH / BTEX / PAH / 8 Metals (W-26)	χ Manganese	X Iron	Х	PCB						
			(-			x		-	1	1							
				100	and the second s										_			
						-	£											
								N		1		h						
							-	1							_			
							-											
							* 7							-			_	
						TOTAL												
Vater Conta = VOA Vial = Zinc Aceta	iner Codes: P = Unprese HCI Preserved; VB = VOA ate Preserved Bottle; E = I	erved Plastic; N = Nitric Vial Sodium Bisulphat EDTA Preserved Bottle	c Preserved Plastic; ORC = te Preserved; VS = VOA Vial is; ST = Sterile Bottle; ASS =	Nitric Preserved OR Sulfuric Preserved; Plastic Bag for Acid	RC; SH = Sodium Hy AV = Airfreight Unpr	droxide/Cd Pr eserved Vial S	reserved; S = SG = Sulfuric	Sodium Hydr Preserved A	oxide Preserv mber Glass;	ved Plastic; AG H = HCl prese	= Amber Glas erved Plastic; H	s Unpreserved, HS = HCI prese	AP - Airfreight L ved Speciation b	npreserved P ottle; SP = Su	astic Ifuric Preserve	ed Plastic; F =	Formaldehy	de Preserved Glass:

Melbourne Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Hors State Stat

web : www.eurofins.com.au

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail : EnviroSales@eurofins.com

Sample Receipt Advice

GHD Pty Ltd NSW
Emma Harrison
LINDFIELD
21-27850
Not provided
10 Day
Dec 14, 2018 1:28 PM
633721

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \checkmark Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 1.9 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- \times Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Emma Harrison - emma.harrison@ghd.com.

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

38 Years of Environmental Analysis & Experience

	eurofins mgt ABN- 50 005 e.mail : Envir web : www.e						eurofins m.au	s.com	2 0 P N	Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271				16 I Lan Pho	dney it F3, Building F Mars Road ne Cove West NSW 2066 one : +61 2 9900 8400 TA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736
A	ompany Name: Idress:	Sydney NSW 2000	NSW 3 Castlereagh	n Street			Re	der N eport : ione: x:		0	33721 2 9239 2 9239	9 710				Due: Priority:	Dec 14, 2018 1:28 PM Jan 2, 2019 10 Day Emma Harrison
	oject Name: oject ID:	LINDFIELD 21-27850													Eurofir	ns mgt Analytical Serv	rices Manager : Nibha Vaidya
	Sample Detail						Iron (filtered)	Manganese	Manganese (filtered)	Polychlorinated Biphenyls	Halogenated Volatile Organics	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)	BTEXN and Volatile TRH			
Mel	bourne Laborate	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	х	Х	Х	х	Х			
Syd	ney Laboratory	- NATA Site # 1	8217														
	bane Laborator														_		
	h Laboratory - N		'36												4		
	ernal Laboratory									<u> </u>	L				4		
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
1	GHD_BH1	Dec 14, 2018		Water	M18-De25082		Х		х		х		Х				
2	GHD_BH1A	Dec 14, 2018		Water	M18-De25083		х		х		х		х		_		
3	BH5	Dec 14, 2018		Water	M18-De25084		Х		х	x	х		х		_		
4	BH6	Dec 14, 2018		Water	M18-De25085		х		х		X		Х		_		
5	QC01	Dec 14, 2018		Water	M18-De25086		х		Х	Х	Х		х		4		
6	RB01	Dec 14, 2018		Water	M18-De25087	Х		X		X	Х	Х			4		
7	TRIP BLANK	Dec 14, 2018		Water	M18-De25088									Х	4		
8	TRIP SPIKE	Dec 14, 2018		Water	M18-De25089									Х	_		
Tes	t Counts					1	5	1	5	3	6	1	5	2			

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000 AC-MRA

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Emma Harrison

mgt

Report
Project name
Project ID
Received Date

633721-W LINDFIELD 21-27850 Dec 14, 2018

Client Sample ID			GHD BH1	GHD BH1A	BH5	BH6
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			M18-De25082	M18-De25083	M18-De25084	M18-De25085
Date Sampled			Dec 14, 2018	Dec 14, 2018	Dec 14, 2018	
•			Dec 14, 2010	Dec 14, 2010	Dec 14, 2018	Dec 14, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM F			0.01	0.01	0.01	0.01
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions					
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
BTEX						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	105	71	95	80
Halogenated Volatile Organics						
1.1-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dibromoethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Client Sample ID			GHD_BH1	GHD_BH1A	BH5	BH6
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			M18-De25082	M18-De25083	M18-De25084	M18-De25085
Date Sampled			Dec 14, 2018	Dec 14, 2018	Dec 14, 2018	Dec 14, 2018
Test/Reference	LOR	Unit	Dec 14, 2010	Dec 14, 2010	Dec 14, 2010	Dec 14, 2010
	LUR	Unit				
Halogenated Volatile Organics	0.001		0.001	0.004	0.001	0.004
1.3-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromodichloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromoform	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Carbon Tetrachloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chloroform	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Chloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Iodomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Methylene Chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichlorofluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Vinyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Vic EPA IWRG 621 CHC (Total)*		mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L %	< 0.005	< 0.005	< 0.005	< 0.005
4-Bromofluorobenzene (surr.)	1	%	105	71	95	80
Toluene-d8 (surr.)		70	101	12	95	01
Polycyclic Aromatic Hydrocarbons	0.001		0.001	0.004	0.001	0.004
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene Discussion	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	54	60	76	50
p-Terphenyl-d14 (surr.)	1	%	78	52	83	92

Client Sample ID			GHD_BH1	GHD_BH1A	BH5	BH6
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			M18-De25082	M18-De25083	M18-De25084	M18-De25085
Date Sampled			Dec 14, 2018	Dec 14, 2018	Dec 14, 2018	Dec 14, 2018
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls						
Aroclor-1016	0.001	mg/L	-	-	< 0.001	-
Aroclor-1221	0.001	mg/L	-	-	< 0.001	-
Aroclor-1232	0.001	mg/L	-	-	< 0.001	-
Aroclor-1242	0.001	mg/L	-	-	< 0.001	-
Aroclor-1248	0.001	mg/L	-	-	< 0.001	-
Aroclor-1254	0.001	mg/L	-	-	< 0.001	-
Aroclor-1260	0.001	mg/L	-	-	< 0.001	-
Total PCB*	0.001	mg/L	-	-	< 0.001	-
Dibutylchlorendate (surr.)	1	%	-	-	137	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	104	-
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	0.003	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	0.001	0.002
Copper (filtered)	0.001	mg/L	< 0.001	0.057	0.002	0.022
Iron (filtered)	0.05	mg/L	44	58	3.2	1.2
Lead (filtered)	0.001	mg/L	< 0.001	0.002	< 0.001	0.002
Manganese (filtered)	0.005	mg/L	2.1	5.8	3.7	5.5
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.035	0.084	0.023	0.047
Zinc (filtered)	0.005	mg/L	0.072	0.17	0.054	0.14

Client Sample ID			QC01	RB01	TRIP BLANK	R20TRIP SPIKE
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			M18-De25086	M18-De25087	M18-De25088	M18-De25089
Date Sampled			Dec 14, 2018	Dec 14, 2018	Dec 14, 2018	Dec 14, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	100
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	79
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	< 0.02	-
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	-	-
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	-	-
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	-	-
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	-	-
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	77
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	-	-
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	-	-
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	-	-
TRH C10-36 (Total)	0.1	mg/L	< 0.1	< 0.1	-	-
BTEX						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	88
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	96
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	110
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	100
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	110

Client Sample ID			QC01	RB01	TRIP BLANK	R20TRIP SPIKE
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			M18-De25086	M18-De25087	M18-De25088	M18-De25089
Date Sampled			Dec 14, 2018	Dec 14, 2018	Dec 14, 2018	Dec 14, 2018
Test/Reference	LOR	Unit		,	,	,
BTEX	Loix	Onit				
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	< 0.003	110
4-Bromofluorobenzene (surr.)	1		92	72	112	122
Halogenated Volatile Organics		70				
1.1-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	_	
1.1-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	-	_
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	-	_
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001		_
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	_	_
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	_	_
1.2-Dibromoethane	0.001	mg/L	< 0.001	< 0.001	_	_
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001		_
1.2-Dichloroethane	0.001	mg/L	< 0.001	< 0.001		_
1.2-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	_	_
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	< 0.001	_	_
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	_	-
1.3-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	_	-
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	_	_
Bromodichloromethane	0.001	mg/L	< 0.001	< 0.001	_	-
Bromoform	0.001	mg/L	< 0.001	< 0.001	-	-
Bromomethane	0.001	mg/L	< 0.001	< 0.001	-	-
Carbon Tetrachloride	0.001	mg/L	< 0.001	< 0.001	-	-
Chlorobenzene	0.001	mg/L	< 0.001	< 0.001	-	-
Chloroform	0.005	mg/L	< 0.005	< 0.005	-	-
Chloromethane	0.001	mg/L	< 0.001	< 0.001	-	-
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	-	-
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	-	-
Dibromochloromethane	0.001	mg/L	< 0.001	< 0.001	-	-
Dibromomethane	0.001	mg/L	< 0.001	< 0.001	-	-
lodomethane	0.001	mg/L	< 0.001	< 0.001	-	-
Methylene Chloride	0.001	mg/L	< 0.001	< 0.001	-	-
Tetrachloroethene	0.001	mg/L	< 0.001	< 0.001	-	-
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	-	-
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	-	-
Trichloroethene	0.001	mg/L	< 0.001	< 0.001	-	-
Trichlorofluoromethane	0.001	mg/L	< 0.001	< 0.001	-	-
Vinyl chloride	0.001	mg/L	< 0.001	< 0.001	-	-
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	-	-
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	-	-
4-Bromofluorobenzene (surr.)	1	%	92	72	-	-
Toluene-d8 (surr.)	1	%	94	70	-	-
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	-	-
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	-	-
Anthracene	0.001	mg/L	< 0.001	< 0.001	-	-
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	-	-
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	-	-
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	-	-
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	-	-
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	-	-

Client Sample ID			QC01	RB01	TRIP BLANK	R20TRIP SPIKE
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			M18-De25086	M18-De25087	M18-De25088	M18-De25089
Date Sampled			Dec 14, 2018	Dec 14, 2018	Dec 14, 2018	Dec 14, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	ł					
Chrysene	0.001	mg/L	< 0.001	< 0.001	-	-
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	-	-
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	-	-
Fluorene	0.001	mg/L	< 0.001	< 0.001	-	-
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	-	-
Naphthalene	0.001	mg/L	< 0.001	< 0.001	-	-
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	-	-
Pyrene	0.001	mg/L	< 0.001	< 0.001	-	-
Total PAH*	0.001	mg/L	< 0.001	< 0.001	-	-
2-Fluorobiphenyl (surr.)	1	%	104	122	-	-
p-Terphenyl-d14 (surr.)	1	%	112	137	-	-
Polychlorinated Biphenyls						
Aroclor-1016	0.001	mg/L	< 0.001	< 0.001	-	-
Aroclor-1221	0.001	mg/L	< 0.001	< 0.001	-	-
Aroclor-1232	0.001	mg/L	< 0.001	< 0.001	-	-
Aroclor-1242	0.001	mg/L	< 0.001	< 0.001	-	-
Aroclor-1248	0.001	mg/L	< 0.001	< 0.001	-	-
Aroclor-1254	0.001	mg/L	< 0.001	< 0.001	-	-
Aroclor-1260	0.001	mg/L	< 0.001	< 0.001	-	-
Total PCB*	0.001	mg/L	< 0.001	< 0.001	-	-
Dibutylchlorendate (surr.)	1	%	96	121	-	-
Tetrachloro-m-xylene (surr.)	1	%	105	124	-	-
Heavy Metals						
Arsenic	0.001	mg/L	-	< 0.001	-	-
Arsenic (filtered)	0.001	mg/L	< 0.001	-	-	-
Cadmium	0.0002	mg/L	-	< 0.0002	-	-
Cadmium (filtered)	0.0002	mg/L	< 0.0002	-	-	-
Chromium	0.001	mg/L	-	< 0.001	-	-
Chromium (filtered)	0.001	mg/L	< 0.001	-	-	-
Copper	0.001	mg/L	-	< 0.001	-	-
Copper (filtered)	0.001	mg/L	0.003	-	-	-
Iron	0.05	mg/L	-	< 0.05	-	-
Iron (filtered)	0.05	mg/L	3.1	-	-	-
Lead	0.001	mg/L	-	< 0.001	-	-
Lead (filtered)	0.001	mg/L	< 0.001	-	-	-
Manganese	0.005	mg/L	-	< 0.005	-	-
Manganese (filtered)	0.005	mg/L	3.7	-	-	-
Mercury	0.0001	mg/L	-	< 0.0001	-	-
Mercury (filtered)	0.0001	mg/L	< 0.0001	-	-	-
Nickel	0.001	mg/L	-	< 0.001	-	-
Nickel (filtered)	0.001	mg/L	0.023	-	-	-
Zinc	0.005	mg/L	-	< 0.005	-	-
Zinc (filtered)	0.005	mg/L	0.055	-	-	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Dec 20, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons	Melbourne	Dec 20, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Dec 20, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Melbourne	Dec 20, 2018	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Eurofins mgt Suite B7 (filtered metals)			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Dec 20, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Melbourne	Dec 20, 2018	7 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8 filtered	Melbourne	Dec 20, 2018	28 Day
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Halogenated Volatile Organics	Melbourne	Dec 20, 2018	7 Day
- Method: USEPA 8260 MGT 350A Halogenated Volatile Organics			
Polychlorinated Biphenyls	Melbourne	Dec 20, 2018	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Heavy Metals	Melbourne	Dec 20, 2018	180 Day
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Heavy Metals (filtered)	Melbourne	Dec 20, 2018	180 Day
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins mgt Suite B7			
Metals M8	Melbourne	Dec 20, 2018	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

e.mail : Enviro				50 005 085 521 EnviroSales@eurofins.cor www.eurofins.com.au			Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 urofins.com NATA # 1261 .au Site # 1254 & 14271		16 Lar Pho	dney it F3, Building F Mars Road ne Cove West NSW 2066 one : +61 2 9900 8400 .TA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 2079						
	mpany Name: dress:	GHD Pty Ltd Level 15, 13: Sydney NSW 2000		n Street			Re	der N eport a ione: x:		0	33721 2 923 2 923	9 710				Received: Due: Priority: Contact Name:	Dec 14, 2018 1:28 PM Jan 2, 2019 10 Day Emma Harrison
	oject Name: oject ID:	LINDFIELD 21-27850													Eurofin	s mgt Analytical Se	rvices Manager : Nibha Vaidya
	Sample Detail				Iron	Iron (filtered)	Manganese	Manganese (filtered)	Polychlorinated Biphenyls	Halogenated Volatile Organics	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)	BTEXN and Volatile TRH				
Melk	ourne Laborat	ory - NATA Site	# 1254 & 142	271		х	х	х	х	Х	Х	х	х	х			
Sydı	ney Laboratory	- NATA Site # 1	8217														
Bris	bane Laborator	ry - NATA Site #	20794														
Pert	h Laboratory -	NATA Site # 237	36														
	rnal Laboratory						<u> </u>	<u> </u>							4		
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
1	GHD_BH1	Dec 14, 2018		Water	M18-De25082		х		х		х		х]		
2	GHD_BH1A	Dec 14, 2018		Water	M18-De25083		х		Х		Х		х				
3	BH5	Dec 14, 2018		Water	M18-De25084		х		Х	х	Х		х				
4	BH6	Dec 14, 2018		Water	M18-De25085		х		Х		х		х		1		
5	QC01	Dec 14, 2018		Water	M18-De25086		X		х	X	X		X		1		
6	RB01	Dec 14, 2018		Water	M18-De25087	Х		X	L	X	X	Х			4		
7	TRIP BLANK	Dec 14, 2018		Water	M18-De25088									х	4		
8	TRIP SPIKE	Dec 14, 2018		Water	M18-De25089									Х	4		
Test	Counts					1	5	1	5	3	6	1	5	2			

Internal Quality Control Review and Glossary

General

1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Terma	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	Quality Systems Manual ver 5.1 US Department of Defense
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	s				
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	s				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank	,	10.000	0.000	1 400	
Halogenated Volatile Organics					
1.1-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.1-Dichloroethene	mg/L	< 0.001	0.001	Pass	
1.1.1-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.1.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dibromoethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.2-Dichloroethane	-	< 0.001	0.001	Pass	
1.2-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.3-Trichloropropane	mg/L	< 0.001	0.001	Pass	
• •	mg/L	< 0.001			
1.3-Dichlorobenzene	mg/L		0.001	Pass	
1.3-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.4-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
Bromodichloromethane	mg/L	< 0.001	0.001	Pass	
Bromoform	mg/L	< 0.001	0.001	Pass	
Bromomethane	mg/L	< 0.001	0.001	Pass	
Carbon Tetrachloride	mg/L	< 0.001	0.001	Pass	
Chlorobenzene	mg/L	< 0.001	0.001	Pass	
Chloroform	mg/L	< 0.005	0.005	Pass	
Chloromethane	mg/L	< 0.001	0.001	Pass	
cis-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Dibromochloromethane	mg/L	< 0.001	0.001	Pass	
Dibromomethane	mg/L	< 0.001	0.001	Pass	
lodomethane	mg/L	< 0.001	0.001	Pass	
Methylene Chloride	mg/L	< 0.001	0.001	Pass	
Tetrachloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
trans-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Trichloroethene	mg/L	< 0.001	0.001	Pass	
Trichlorofluoromethane	mg/L	< 0.001	0.001	Pass	
Vinyl chloride	mg/L	< 0.001	0.001	Pass	
Method Blank		T T			
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank Polychlorinated Biphenyls					
Aroclor-1016	mg/L	< 0.001	0.001	Pass	
Aroclor-1221	mg/L	< 0.001	0.001	Pass	
Aroclor-1232	mg/L	< 0.001	0.001	Pass	
Aroclor-1242	mg/L	< 0.001	0.001	Pass	
Aroclor-1248	mg/L	< 0.001	0.001	Pass	
Aroclor-1254	mg/L	< 0.001	0.001	Pass	
Aroclor-1260	mg/L	< 0.001	0.001	Pass	
Total PCB*	mg/L	< 0.001	0.001	Pass	
Method Blank				1. 000	
Heavy Metals					
Arsenic	mg/L	< 0.001	0.001	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Iron	mg/L	< 0.05	0.05	Pass	
Iron (filtered)	mg/L	< 0.05	0.05	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Manganese	mg/L	< 0.005	0.005	Pass	
Manganese (filtered)	mg/L	< 0.005	0.005	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery			· · ·		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	111	70-130	Pass	
TRH C6-C10	%	118	70-130	Pass	
TRH >C10-C16	%	113	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	112	70-130	Pass	
TRH C10-C14	%	108	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	108	70-130	Pass	
Toluene	%	119	70-130	Pass	
Ethylbenzene	%	103	70-130	Pass	
m&p-Xylenes	%	106	70-130	Pass	
Xylenes - Total	%	106	70-130	Pass	
LCS - % Recovery					
Halogenated Volatile Organics					
1.1-Dichloroethene	%	76	70-130	Pass	
1.1.1-Trichloroethane	%	108	70-130	Pass	
1.2-Dichlorobenzene	%	109	70-130	Pass	
1.2-Dichloroethane	%	115	70-130	Pass	
Trichloroethene	%	108	70-130	Pass	
LCS - % Recovery			· · ·		
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	123	70-130	Pass	
Acenaphthylene	%	120	70-130	Pass	
Anthracene	%	127	70-130	Pass	
Benz(a)anthracene	%	91	70-130	Pass	
Benzo(a)pyrene	%	83	70-130	Pass	
Benzo(b&i)fluoranthene	%	74	70-130	Pass	
Benzo(g.h.i)perylene	%	84	70-130	Pass	
Benzo(k)fluoranthene	%	81	70-130	Pass	
Chrysene	%	114	70-130	Pass	
Dibenz(a.h)anthracene	%	80	70-130	Pass	
Fluoranthene	%	111	70-130	Pass	
Fluorene	%	125	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	71	70-130	Pass	
Naphthalene	%	114	70-130	Pass	
Phenanthrene	%	129	70-130	Pass	
Pyrene	%	114	70-130	Pass	
LCS - % Recovery		·			
Heavy Metals					
Arsenic	%	88	80-120	Pass	
Arsenic (filtered)	%	96	80-120	Pass	
Cadmium	%	87	80-120	Pass	
Cadmium (filtered)	%	87	80-120	Pass	
Chromium	%	87	80-120	Pass	
Chromium (filtered)	%	92	80-120	Pass	
Copper	%	95	80-120	Pass	
Copper (filtered)	%	98	80-120	Pass	
Iron	%	94	80-120	Pass	
Iron (filtered)	%	105	80-120	Pass	
Lead	%	87	80-120	Pass	

Test			Units	Result 1	Acce	eptance imits	Pass Limits	Qualifying Code
Lead (filtered)			%	90	80	0-120	Pass	
Manganese			%	96	80	0-120	Pass	
Manganese (filtered)			%	103	80	0-120	Pass	
Mercury			%	87	75	5-125	Pass	
Mercury (filtered)			%	90	70	0-130	Pass	
Nickel			%	88	80	0-120	Pass	
Nickel (filtered)			%	97	80	0-120	Pass	
Zinc			%	90	80	0-120	Pass	
Zinc (filtered)			%	98	80	0-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		eptance imits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	tions		Result 1				
TRH >C10-C16	M18-De27784	NCP	%	113	70	0-130	Pass	
Spike - % Recovery				•				
Total Recoverable Hydrocarbons	s - 1999 NEPM Fract	tions		Result 1				
TRH C10-C14	M18-De27784	NCP	%	112	70	0-130	Pass	
Spike - % Recovery				·				
Polycyclic Aromatic Hydrocarbo	ns			Result 1				
Acenaphthene	M18-De25082	СР	%	71	70	0-130	Pass	
Acenaphthylene	M18-De25082	CP	%	71		0-130	Pass	
Anthracene	M18-De25082	CP	%	73		0-130	Pass	
Benz(a)anthracene	M18-De25082	CP	%	75		0-130	Pass	
Benzo(a)pyrene	M18-De25082	CP	%	75		0-130	Pass	
Benzo(b&j)fluoranthene	M18-De25082	CP	%	72		0-130	Pass	
Benzo(g.h.i)perylene	M18-De25082	CP	%	72		0-130	Pass	
Benzo(k)fluoranthene	M18-De25082	CP	%	85		0-130	Pass	
Chrysene	M18-De25082	CP	%	84		0-130	Pass	
Dibenz(a.h)anthracene	M18-De25082	CP	%	73		0-130	Pass	
Fluoranthene	M18-De25082	CP	%	99		0-130	Pass	
Fluorene	M18-De25082	CP	%	74		0-130	Pass	
Indeno(1.2.3-cd)pyrene	M18-De25082	CP	%	74		0-130	Pass	
Naphthalene	M18-De25082	CP	%	70		0-130	Pass	
Phenanthrene	M18-De25082	CP	%	86		0-130	Pass	
Pyrene	M18-De25082	CP	%	101		0-130	Pass	
	WIT0-De23002		/0	101		J-130	r ass	
Spike - % Recovery Heavy Metals				Result 1				
Arsenic (filtered)	M18-De22228	NCP	%	90	70	0-130	Pass	
Cadmium (filtered)		NCP	%	90				
Cadmium (intered)	M18-De22228 M18-De22228	NCP	%	94		0-130 0-130	Pass Pass	
	M18-De22228 M18-De22228	NCP	%	93				
Copper (filtered) Iron (filtered)	M18-De22228 M18-De22228	NCP	%	92		0-130	Pass	
						0-130	Pass	
Lead (filtered)	M18-De22228	NCP	%	93		0-130	Pass	
Manganese (filtered)	M18-De22228	NCP	%	92		0-130	Pass	
Mercury (filtered)	M18-De22228	NCP	%	92		0-130	Pass	
Nickel (filtered)	M18-De22228	NCP	%	91		0-130	Pass	
Zinc (filtered)	M18-De22228	NCP	%	93		0-130	Pass	
Spike - % Recovery				Deput 4		T		
Heavy Metals		NOD	0/	Result 1		- 105	D	
Arsenic	M18-De22228	NCP	%	105		5-125	Pass	
Cadmium	M18-De22228	NCP	%	107		5-125	Pass	
Chromium	M18-De22228	NCP	%	108		5-125	Pass	
Copper	M18-De27250	NCP	%	106		5-125	Pass	
Iron	M18-De22228	NCP	%	108		5-125	Pass	
Lead	M18-De22228	NCP	%	107	75	5-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Manganese	M18-De22228	NCP	%	106			75-125	Pass	
Mercury	M18-De22228	NCP	%	105			70-130	Pass	
Nickel	M18-De22228	NCP	%	106			75-125	Pass	
Zinc	M18-De22228	NCP	%	106			75-125	Pass	
Spike - % Recovery				1			1	-	
Total Recoverable Hydrocarbor	ns - 2013 NEPM Fract	ions		Result 1					
Naphthalene	M18-De26515	NCP	%	98			70-130	Pass	
TRH C6-C10	M18-De26515	NCP	%	125			70-130	Pass	
Spike - % Recovery				1			1	-	
Total Recoverable Hydrocarbor	ns - 1999 NEPM Fract	ions		Result 1					
TRH C6-C9	M18-De26515	NCP	%	126			70-130	Pass	
Spike - % Recovery				I			1		
BTEX				Result 1					
Benzene	M18-De26515	NCP	%	99			70-130	Pass	
Toluene	M18-De26515	NCP	%	100			70-130	Pass	
Ethylbenzene	M18-De26515	NCP	%	109			70-130	Pass	
m&p-Xylenes	M18-De26515	NCP	%	112			70-130	Pass	
o-Xylene	M18-De26515	NCP	%	109			70-130	Pass	
Xylenes - Total	M18-De26515	NCP	%	111			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate							•		
Total Recoverable Hydrocarbor	ns - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	M18-De23687	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	M18-De23687	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	M18-De23687	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				•			•		
Total Recoverable Hydrocarbor	ns - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	M18-De23687	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	M18-De23687	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	M18-De23687	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				•			•		
Polycyclic Aromatic Hydrocarb	ons			Result 1	Result 2	RPD			
Acenaphthene	B18-De19804	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	B18-De19804	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	B18-De19804	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	B18-De19804	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	B18-De19804	NCP	mg/L	. 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	D10-De13004	1101	<u> </u>	< 0.001	< 0.001				
	B18-De19804	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene						<1 <1		Pass Pass	
Benzo(g.h.i)perylene Benzo(k)fluoranthene	B18-De19804	NCP	mg/L	< 0.001	< 0.001		30%		
	B18-De19804 B18-De19804	NCP NCP	mg/L mg/L	< 0.001 < 0.001	< 0.001 < 0.001	<1	30% 30%	Pass	
Benzo(k)fluoranthene	B18-De19804 B18-De19804 B18-De19804	NCP NCP NCP	mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001	<1 <1	30% 30% 30%	Pass Pass	
Benzo(k)fluoranthene Chrysene	B18-De19804 B18-De19804 B18-De19804 B18-De19804 B18-De19804	NCP NCP NCP NCP	mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1	30% 30% 30% 30%	Pass Pass Pass	
Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene	B18-De19804 B18-De19804 B18-De19804 B18-De19804 B18-De19804 B18-De19804	NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass	
Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene	B18-De19804 B18-De19804 B18-De19804 B18-De19804 B18-De19804 B18-De19804 B18-De19804	NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene	B18-De19804 B18-De19804 B18-De19804 B18-De19804 B18-De19804 B18-De19804 B18-De19804 B18-De19804 B18-De19804	NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	
Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene	B18-De19804	NCP NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene	B18-De19804	NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene	B18-De19804	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	B18-De19804	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate	B18-De19804	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate Heavy Metals	B18-De19804	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Result 1	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Result 2	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 RPD	30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate Heavy Metals Arsenic (filtered)	B18-De19804 B18-De19804	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001	< 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Iron (filtered)	M18-De22228	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Lead (filtered)	M18-De22228	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese (filtered)	M18-De22228	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Mercury (filtered)	M18-De22228	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	M18-De22228	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc (filtered)	M18-De22228	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M18-De22228	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	M18-De22228	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	M18-De22228	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper	M18-De22228	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Iron	M18-De22228	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Lead	M18-De22228	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese	M18-De22228	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Mercury	M18-De22228	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	M18-De22228	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc	M18-De22228	NCP	mg/L	0.006	0.008	16	30%	Pass	
Duplicate									
Total Recoverable Hydroca	arbons - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M18-De26515	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	M18-De26515	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
Total Recoverable Hydroca	arbons - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M18-De26515	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	M18-De26515	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	M18-De26515	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	M18-De26515	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	M18-De26515	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	M18-De26515	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	M18-De26515	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	

Comments

Eurofins | mgt accreditation number 1261, corporate site 1254 and 14271 is currently in progress of a controlled transition to a new custom built location at 6 Monterey Road, Dandenong South, Victoria 3175. All results on this report denoted as being performed by Eurofins | mgt 2-5 Kingston Town Close, Oakleigh Victoria 3166 corporate site 1254, will have been performed on either Oakleigh or new Dandenong South site.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

R20 This sample is a Trip Spike and therefore all results are reported as a percentage

Authorised By

Nibha Vaidya	Analytical Services Manager
Chris Bennett	Senior Analyst-Metal (VIC)
Harry Bacalis	Senior Analyst-Volatile (VIC)
Joseph Edouard	Senior Analyst-Organic (VIC)

1. Juli

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mg shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg to liable for consequential damages including, but not limited to, ist protection and shall not be reported as experient liable and relates only to the times tested. Unless indicated otherwise, the tests were performed on the samples as received.

Enviro Sample NSW

To: Subiect: Nibha Vaidya; COC NSW RE: Updated Analysis - FW: 2127850 - Lindfield Groundwater Hub samples

From: Emma.Harrison@ghd.com [mailto:Emma.Harrison@ghd.com] Sent: Friday, 7 December 2018 10:05 AM To: Nibha Vaidya Cc: Joanna Curry Subject: RE: 2127850 - Lindfield Groundwater Hub samples

EXTERNAL EMAIL*

Hi Nibha,

Please also include asbestos identification in the WC1 sample analysis.

Thanks, Emma

From: Emma Harrison Sent: Friday, 7 December 2018 10:02 AM To: 'Nibha Vaidya' <<u>NibhaVaidya@eurofins.com</u>> Cc: Jo Curry <<u>Joanna.Curry@ghd.com</u>> Subject: 2127850 - Lindfield Groundwater Hub samples

#632314

Hi Nibha,

We dropped off some samples to your lab last night (I have attached the 3 COC forms for your reference).

Would you please analyse WC1 for the following:

TRH, BTEXN, PAH, NEPM Metals, halogenated volatile organics, and iron

Please keep the other samples on hold.

Also, would you please add Joanna Curry to the COC emails and results?

Many thanks Emma

Emma Harrison Senior Environmental Geologist

GHD

Proudly employee owned T: +61 2 9239 7910 | V: 217910 | M: +61 408 401 511 | E: emma.harrison@ghd.com Level 15 133 Castlereagh Street Sydney NSW 2000 Australia | www.ghd.com

WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION

Please consider our environment before printing this email

Laboratory use Only Received By	A Received By	Method of Courier (#		10 BHIA - 45	BHIA 40	8 5HA 13.5	BH 1A _3.0	· SHIA - 2.5	5 SHIA - 2.0	4 SHIA - 1.5	3 8717-0.5	2 BH H - 0.4	1 BHIA -0,2	Na Client Sample ID	Quote ID Ne 181121GHDN	Purchase Order	Special Direction		Phone Na 0408 401 511	Contact Name Emma F	Address Sydney, 2000		Company GHD Pty Ltd	CHAIN OF CUSTC
1	1 ANNER) Hand Delivered	Total Counts	И										Date Matrix	(Nais	Where met	A als are reques	nalysis		Emma Harrison		Project Name	Project Ne	ABN 50 005 005 521
syd bne mel per adl new dar	SYD BNE MEL PER ADL NEW DAR	ed Postal			and a serie of the way for the property of the series of the series where the									Suite I		NEPM Me Haloge	34 : TRH, etais (As, Ni, Mn, S nated Vol	Be, B, (Se, Zn) latile Or	Cd, Co, r rganics		łg, Pb,	CORE!	ct Nº	Sydney Laboratory Unit F3 Bld.F. 16 Mars R4, Lane Cove West, NSW 2066 02 0900 8400 EnviroSampleNSW@eurofins.com
NEW DAR Signature	I NEW DAR Signature	Name													As		entificatio prinated B Iron (I	iphenyl				Lindfield Village Hub - groundwater well installation	2127850	
faironns soon of topologies to the	Bres	Signature								1 2 2												Report Format	Project Manager	Brisbane Laboratory Unit 1, 21 Smallwood Pr., Murane, CLD 4172 07 3902 4600 EnveroSampleQLD@eurofins.com
Date//	Date 0110																		W			ESDat	Emma Harrison	Perth Laboratory Unit 2.91 Leach Highway, Kewdale WA 6105 06 9251 9600 EnviroSampleWA@eurofins.com
. Time	Time	Date													25 12 200m	1L Plasti 50mL Pla 25mL Pla 1L Amber	stic stic Glass		Containers	Email for Results		Relinquished by		ale WA 6105 A@eurofins.com
Report No	LS19W Temperature	// Time								1				Other Sample DG Haz	125m	40mLvia nL Amber Jar 3 Day		→ Overnight (9am)*		emmo, harisoregid		Emmattary		Melbourne Laboratory Kingston Town Close, Oakleigh, VIC 3166 G3 8564 5000 EnviroSampleVlo@eurofins.com
		 . 												Sample Comments / DG Hazard Warning) Surcharges spply	S 5 Day	🗆 2 Day*	(9am)*	Turn Around Requirements	regidian	611218	avrison		h, VIC 3166 ^r ic@eurofins.com

Paus 14/1 0531800 R6 Mode	Laboratory Use Only	Method of Shipment		AI HO II	BHIA	• BH	4	۰ بی	5 3+	4 BH	3 BH IA	2 BHIA	1 BHIA	-	Quote ID Ns	Purchase Order	Special Direction	Phone N2	Contact Name	to and the second		Company	CH/
Received By	Received By RANNO	Courier (#)	Total	1A 1 9.5	IA 9,0	BHIP 5.5	BH IA E.D	BHIA- 7.5	BHIA - TIO	BHIA - 65	IP 6.0	171 55	15.0	Client Sample ID Date	181121GHDN			0408 401 511	Emma Harrison	Sydney, 2000	Level 15, 133 Castlereagh St	GHD Pty Ltd	CHAIN OF CUSTODY RECORD
SYD	A (SVD	Hand Delivered	Total Counts							14 V 4 1994				Matrix	(Note		Analy dis one requested pa d4 : TRH, BTE	ann absail, j	Total" or "Fi	lored")	Project Name	Project Nº	Sydney Laboratory Unit F3 Bid F, 16 Mars 02 9000 8400 Enviro
SYD BNE MEL PER ADL NEW DAR	BNE MEL PER ADL NEW DAR	Postal												Suite N	M13A - N	- # 7	etals (As, Be, I Ni, Mn, Se, Z	n)		Hg, Pb,	Lindfield V		Sydney Laboratory Unit F3 Birl F, 16 Mars Rd, Lane Cove West, NSW 2006 02 9000 4400 EnviroSampleNSW@eurofurs.com
PER ADL N	PER ADL N	7												a composition and	As		nated Volatile entification in				Lindfield Village Hub - groundwater well installation	21	ratory 6 Mars Rd, Lane Cove West, NSW EnviroSampleNSW@eurofus.com
EW DAR	EW DAR	Name														Polychic	rinated Biphe	nyis (PCE	}		roundwater w	2127850	SW 2066 som
Signature	Signature	A A A A A A A A A A A A A A A A A A A															tron (Fe)				ell installation		Brisbane La Unit 1, 21 Sma 07 3902 4600
Significant of the	Ando	Sigr																			Report Format	Project Manager	Brisbane Laboratory Unit 1, 21 Smallwood PI, Murame, OLD 4172 07 3902 4600 EnwioSampleQLD@euro/ins.com
pate Date	Date	Signature	-						4												ESDat	Emma Harrison	
of Eerola's (avg) Standard Territo	2402															1L Plasti	C		m	10-1-	Re		Perth Laboratory Uni 2, 91 Leach Highway, Kewitale WA 6105 (89251 9600 EnviroSampleWA@eurofins.com
Time	Time	Date				-				1					12	50mL Pla 25mL Pla 1L Amber	stic Glass	Containers	Email for Results		Relinquished by		105 ns com
el oherware. A cosy of Exvellers Twore and Couldrons it and other an request	1:54 Temperature	Time												Other Sample Comments / DG Hazard Warning		40mLvia nL Amber Jar 3 Day*			emma havrisa-aghal. ram	61218	Emmattarivision		Melbourne Laboratory Kingston Town Close, Oakleigh, VIC 3168 38664 6000 EnviroSampleVic@eurofins.com

200 E0002 00	aboratory Use Only	Method of Shipment		10	Ð	7	6	U	4	3 ISH	2 RH	By	8	Quote ID Na	Purchase Order	Special Direction		Phone Na	Contact Name	Address		Company	e e e
Received By Hudden to a Known Account of the Sympony Australia or 3 November 2016	DIN Received By	C Courier (#)	Total Counts						4C1	SHIA - 11.0	BHIA - 10,5	BH1A- 10.0	Client Sample ID Date	181121GHDN			A DATA MARKAN A A A A A A A A A A A A A A A A A A	0408 401 511	Emma Harrison	Sydney, 2000	I evel 15. 133 Castlereach St	GHD Pty Ltd	
GYS	A (SAD	Hand Delivered	ounts						n organization de la constantion				Matrix	{Note:		A Is are reques 4 : TRH,	-		btal" or "Filte	rred*)	Project Name	Project Na	Sydney Lab Unit F3 Bld F 02 9900 8400
SYD BNE MEL PER ADL NEW DAR	SYD BNE MEL PER ADL NEW DAR	Postal									1		Suite	V13A - N	IEPM Me	tals (As, Ni, Mn, S	Be, B, (Se, Zn)	Cd, Co, C	Cr, Cu, H	lg, Pb,	dine i		
PER ADL	PER ADL											And the state of t		Ast		nated Vol entificatio			64)	- 1	Village Hub •	N	oratory 16 Mars Rd, Lane Cove Weet, NSW 2066 EnviroSampleNSW@eurofins.com
NEW DAR	NEW DAR	Name							1			1				rinated B		_			groundwater	2127850	NSW 2066 Is com
Signature	Signature							-		1		Ĩ				iron (Fe)				Lindfield Village Hub • groundwater well installation		Brisbane La Unit 1, 21 Sm 07 3902 4600
Submission of examples to the E	Anna	Signature				• • • • • • • •															n Report Format	Project Manager	Brisbane Laboratory Unit 1, 21 Smallwood PL, Murcime, CLD 4172 07 3502 4500 EnviroSampleQLD@eurofins.com
Date ////	Date Giffe				*																ESDat	Emma Harrison	Perth Laboratory Unit 2, 91 Leach Highway, Kewdale WA 6105 08 9251 9609 EnviroSampleWA@eurofins.com
Time Terrna and Cool@Hutas unlastit agre	Time	Date												25 12 200m	1L Plastic OmL Plas 5mL Plas L Amber	stic stic Glass		Containers	Email for Results		Relinguished by		WA 6105 Jeurofins.com
Time Tendin [ng] Stasient Tenns and Cordinans industriagend influenties. A copy of Eurorians [nep: Standard Tenns and Cordinans industriagend influenties. A copy of Eurorians [nep: Standard Tenns and Cordinans.		/ Time											Other Sample Co DG Hazar	125m	40mLvia L Amber Jar 3 Day		→ Overnight (9am)*	iners Turn Around	ermo, hani sonce ind. m	 	Emmatianson		Melbourne Laboratory Kingsten Town Closs, Oakleigh, VIC 3166 03 8564 5000 EnviroSampleVic@eurolins.com
	222	.											Sample Comments / DG Hazard Warning	* Surcharges worky	년 5 Day	🗋 2 Day*	'm)*	Turn Around Requirements	card.ron	81218	SM		/IC 3166 §eurofins com

GHD Pty Ltd NSW

Melbourne Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Hors State Cove Mest NSW 2067 Phone : +61 2 9900 8400 NATA # 1261 Site # 20794

web : www.eurofins.com.au

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com

Sample Receipt Advice

	-
Contact name:	Emma Harrison
Project name:	LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTALLATION
Project ID:	2127850
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Dec 7, 2018 10:02 AM
Eurofins mgt reference:	632314

Sample information

Company name:

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \checkmark Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : .8 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \times Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Extra sample not on C.O.C received as BH1A 1.0 (jar & bag), placed on hold.

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Emma Harrison - emma.harrison@ghd.com.

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

38 Years of Environmental Analysis & Experience

	🔅 eur	ofins	mgt		ABN- 50 005 0 e.mail : Envirot web : www.eur	Sales@		s.com	2 C P N	Dakleigh Phone : - IATA #	ston Tov VIC 31 +61 3 85	66 564 500		16 N Lan Pho	dney it F3, Building F Mars Road e Cove West NSW 2066 one : +61 2 9900 8400 TA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 2075	Perth 2/91 Leach Highway Kewdale WA 6105 0 Phone :-61 8 9251 9600 94 NATA # 1261 Site # 23736
A o	Company Name: GHD Pty Ltd NSW Address: Level 15, 133 Castlereagh Street Sydney NSW 2000 Project Name: LINDFIELD VILLAGE HUB - GROUNDWATER WELL INST Project ID: 2127850							der N port # ione: x:		0	32314 2 923 2 923	9 710				Received: Due: Priority: Contact Name:	Dec 7, 2018 10:02 AM Dec 14, 2018 5 Day Emma Harrison
	Sample Detail								Polycyclic Aromatic Hydrocarbons	BTEX and Naphthalene	Halogenated Volatile Organics	Moisture Set	Total Recoverable Hydrocarbons	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)		is mgt Analytical Sel	rvices Manager : Nibha Vaidya
Mel	bourne Laborate	ory - NATA Site	# 1254 & 142	271													
-	ney Laboratory					х	х	x	Х	х	х	х	X	х	4		
	bane Laborator										ļ				4		
Per	h Laboratory - I	NATA Site # 237	'36												4		
	ernal Laboratory							<u> </u>		<u> </u>					4		
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
1	WC1	Dec 06, 2018		Soil	S18-De12968	х		х	х	х	х	х	Х	х]		
2	BH1A_0.2	Dec 06, 2018		Soil	S18-De12969		х]		
3	BH1A_0.4	Dec 06, 2018		Soil	S18-De12970		х										
4	BH1A_0.5	Dec 06, 2018		Soil	S18-De12971		х										
5	BH1A_1.5	Dec 06, 2018		Soil	S18-De12972		х]		
6	BH1A_2.0	Dec 06, 2018		Soil	S18-De12973		х]		
7	BH1A_2.5	Dec 06, 2018		Soil	S18-De12974		х										
8	BH1A_3.0	Dec 06, 2018		Soil	S18-De12975		х]		
9	BH1A_3.5	Dec 06, 2018		Soil	S18-De12976		х										

	🔅 eur	rofins	mgt		ABN– 50 005 (e.mail : Enviro web : www.eur	Sales@	eurofins	s.com	2 0 P N)akleigh hone : · IATA #	ston Tov VIC 31 +61 3 85	66 64 500		16 I Lan Pho	dney it F3, Building F Mars Road ne Cove West NSW 2066 one : +61 2 9900 8400 TA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 2079	
A o	Company Name: GHD Pty Ltd NSW Address: Level 15, 133 Castlereagh Street Sydney NSW 2000 Project Name: LINDFIELD VILLAGE HUB - GROUNDWATER WELL INS Project ID: 2127850					FALLA	Re Ph Fai	der N port ; one: x:		0	32314 2 923 2 923	9 710			Furofir	Received: Due: Priority: Contact Name:	Dec 7, 2018 10:02 AM Dec 14, 2018 5 Day Emma Harrison rvices Manager : Nibha Vaidya
	Sample Detail						НОГД	Iron	Polycyclic Aromatic Hydrocarbons	BTEX and Naphthalene	Halogenated Volatile Organics	Moisture Set	Total Recoverable Hydrocarbons	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)			
Mel	ourne Laborat	ory - NATA Site	# 1254 & 142 ⁻	71													
		- NATA Site # 1				Х	Х	Х	Х	Х	х	Х	Х	х			
Bris	bane Laborato	ry - NATA Site #	20794												1		
Pert		NATA Site # 237	36												4		
10	BH1A_4.0	Dec 06, 2018		Soil	S18-De12977		Х								4		
11	BH1A_4.5	Dec 06, 2018		Soil	S18-De12978		X								4		
12	BH1A_5.0	Dec 06, 2018		Soil	S18-De12979		X								4		
13	BH1A_5.5	Dec 06, 2018		Soil	S18-De12980		X								4		
14	BH1A_6.0	Dec 06, 2018		Soil	S18-De12981		X								4		
15	BH1A_6.5	Dec 06, 2018		Soil	S18-De12982		X								4		
16	BH1A_7.0	Dec 06, 2018		Soil	S18-De12983		X								4		
17	BH1A_7.5	Dec 06, 2018		Soil	S18-De12984		X								4		
18	BH1A_8.0	Dec 06, 2018		Soil	S18-De12985		X								-		
19	BH1A_8.5	Dec 06, 2018		Soil	S18-De12986		X								4		
20	BH1A_9.0	Dec 06, 2018		Soil	S18-De12987		X								4		
21	BH1A_9.5	Dec 06, 2018		Soil	S18-De12988		Х										

🔅 euro	fins mgt		ABN- 50 005 (e.mail : Enviro' web : www.eur	Sales@	eurofins	.com	2· 0 P N	lelbourn -5 Kings vakleigh hone : + ATA # 1 ite # 12	ton Tov VIC 31 61 3 85	564 500	e 10	16 M Lan Pho	they It F3, Building F Mars Road e Cove West NSW 2066 one : +61 2 9900 8400 TA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 46 NATA # 1261 Site # 20	Perth 2/91 Leach Highway Kewdale WA 6105 00 Phone : +61 8 9251 9600 794 NATA # 1261 Site # 23736
Address: Project Name:	Address: Level 15, 133 Castlereagh Street Sydney NSW 2000 Project Name: LINDFIELD VILLAGE HUB - GROUNDWATER WELL INST							02	32314 2 923 2 923	9 710	-		Eurofi	Received: Due: Priority: Contact Name: ns mgt Analytical S	Dec 7, 2018 10:02 AM Dec 14, 2018 5 Day Emma Harrison ervices Manager : Nibha Vaidya
							Polycyclic Aromatic Hydrocarbons	BTEX and Naphthalene	Halogenated Volatile Organics	Moisture Set	Total Recoverable Hydrocarbons	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)			
Melbourne Laboratory -	- NATA Site # 1254 & 142	71											-		
Sydney Laboratory - NA				Х	Х	Х	Х	Х	Х	Х	X	Х	4		
Brisbane Laboratory - N													-		
Perth Laboratory - NAT		0-11	C10 D-10000										-		
			S18-De12989 S18-De12990		X X								-		
			S18-De12990 S18-De12991		X								-		
		Soil	S18-De12991 S18-De12992		X								1		
Test Counts			C.S BOILOOL	1	24	1	1	1	1	1	1	1	-		

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Emma Harrison

mgt

Report	632314-S								
Project name	LINDFIELD VILLAGE	HUB - GROUN	DWATER	WELL INSTAL					
Project ID	2127850	2127850							
Received Date	Dec 07, 2018								
Client Sample ID				WC1					
Sample Matrix				Soil					
Eurofins mgt Sample	No.			S18-De12968					
Date Sampled				Dec 06, 2018					
Test/Reference		LOR	Unit						
Total Recoverable Hyd	rocarbons - 1999 NEPM F	ractions							
TRH C6-C9		20	mg/kg	< 20					
TRH C10-C14		20	mg/kg	< 20					
TRH C15-C28		50	mg/kg	< 50					
TRH C29-C36		50	mg/kg	< 50					
TRH C10-36 (Total)		50	mg/kg	< 50					
BTEX									
Benzene		0.1	mg/kg	< 0.1					
Toluene		0.1	mg/kg	< 0.1					
Ethylbenzene		0.1	mg/kg	< 0.1					
m&p-Xylenes		0.2	mg/kg	< 0.2					
o-Xylene		0.1	mg/kg	< 0.1					
Xylenes - Total		0.3	mg/kg	< 0.3					
4-Bromofluorobenzene	(surr.)	1	%	110					
Halogenated Volatile C	Drganics								
1.1-Dichloroethane		0.5	mg/kg	< 0.5					
1.1-Dichloroethene		0.5	mg/kg	< 0.5					
1.1.1-Trichloroethane		0.5	mg/kg	< 0.5					
1.1.1.2-Tetrachloroetha	ne	0.5	mg/kg	< 0.5					
1.1.2-Trichloroethane		0.5	mg/kg	< 0.5					
1.1.2.2-Tetrachloroetha	ne	0.5	mg/kg	< 0.5					
1.2-Dibromoethane		0.5	mg/kg	< 0.5					
1.2-Dichlorobenzene		0.5	mg/kg	< 0.5					
1.2-Dichloroethane		0.5	mg/kg	< 0.5					
1.2-Dichloropropane		0.5	mg/kg	< 0.5					
1.2.3-Trichloropropane		0.5	mg/kg	< 0.5					
1.3-Dichlorobenzene		0.5	mg/kg	< 0.5					
1.3-Dichloropropane		0.5	mg/kg	< 0.5					
1.4-Dichlorobenzene		0.5	mg/kg	< 0.5					
Bromodichloromethane		0.5	mg/kg	< 0.5					
Bromoform		0.5	mg/kg	< 0.5					
Bromomethane		0.5	mg/kg	< 0.5					
Carbon Tetrachloride		0.5	mg/kg	< 0.5					
Chlorobenzene		0.5	mg/kg	< 0.5					
Chloroform		0.5	mg/kg	< 0.5					

Chloromethane

mg/kg

< 0.5

0.5

Client Sample ID Sample Matrix			WC1 Soil
Eurofins mgt Sample No.			S18-De12968
Date Sampled			Dec 06, 2018
Test/Reference	LOR	Unit	
Halogenated Volatile Organics		-	
cis-1.2-Dichloroethene	0.5	mg/kg	< 0.5
cis-1.3-Dichloropropene	0.5	mg/kg	< 0.5
Dibromochloromethane	0.5	mg/kg	< 0.5
Dibromomethane	0.5	mg/kg	< 0.5
lodomethane	0.5	mg/kg	< 0.5
Methylene Chloride	0.5	mg/kg	< 0.5
Tetrachloroethene	0.5	mg/kg	< 0.5
trans-1.2-Dichloroethene	0.5	mg/kg	< 0.5
trans-1.3-Dichloropropene	0.5	mg/kg	< 0.5
Trichloroethene	0.5	mg/kg	< 0.5
Trichlorofluoromethane	0.5	mg/kg	< 0.5
Vinyl chloride	0.5	mg/kg	< 0.5
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	< 0.5
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	< 0.5
4-Bromofluorobenzene (surr.)	1	%	110
Toluene-d8 (surr.)	1	%	106
Total Recoverable Hydrocarbons - 2013 NEPM Frac	ctions		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	< 100
TRH >C34-C40	100	mg/kg	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100
Polycyclic Aromatic Hydrocarbons		1	
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5
Chrysene	0.5	mg/kg	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	< 0.5
Total PAH*	0.5	mg/kg	< 0.5
2-Fluorobiphenyl (surr.)	1	%	91
p-Terphenyl-d14 (surr.)	1	%	94

Client Sample ID Sample Matrix			WC1 Soil
Eurofins mgt Sample No.			S18-De12968
Date Sampled			Dec 06, 2018
Test/Reference	LOR	Unit	
Heavy Metals			
Arsenic	2	mg/kg	10
Beryllium	2	mg/kg	< 2
Boron	10	mg/kg	< 10
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	28
Cobalt	5	mg/kg	18
Copper	5	mg/kg	67
Iron	20	mg/kg	18000
Lead	5	mg/kg	40
Manganese	5	mg/kg	690
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	43
Selenium	2	mg/kg	2.9
Zinc	5	mg/kg	110
% Moisture	1	%	16

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Sydney	Extracted Dec 12, 2018	Holding Time 14 Day
- Method: LTM-ORG-2010 TRH C6-C40 Total Recoverable Hydrocarbons - 2013 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Sydney	Dec 12, 2018	14 Day
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 12, 2018	14 Day
BTEX - Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices	Sydney	Dec 12, 2018	14 Day
Halogenated Volatile Organics	Sydney	Dec 12, 2018	7 Day
- Method: E016 Volatile Halogenated Compounds (VHC) Polycyclic Aromatic Hydrocarbons	Sydney	Dec 12, 2018	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)	Sydney	Dec 12, 2018	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS Heavy Metals	Sydney	Dec 12, 2018	180 Day
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS % Moisture	Sydney	Dec 11, 2018	14 Day
- Method: LTM-GEN-7080 Moisture			

	eurofins mgt ABN-50 005 e.mail : Envin web : www.eu						eurofins	s.com	2. 0 P N	Melbourn 2-5 Kings Dakleigh Phone : + NATA # ⁻ Site # 12	ston Tov VIC 31 +61 3 8 1261	66 564 500		Uni 16 Lar Pho	dney it F3, Building F Mars Road ne Cove West NSW 2066 one : +61 2 9900 8400 TA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 460 NATA # 1261 Site # 207	Perth 2/91 Leach Highway Kewdale WA 6105 0 Phone: +61 8 9251 9600 94 NATA # 1261 Site # 23736
	ompany Name: Idress:			Re	rder N eport a none: ix:		632314 02 9239 7100 02 9239 7199						Received: Due: Priority: Contact Name:	Dec 7, 2018 10:02 AM Dec 14, 2018 5 Day Emma Harrison			
	oject Name: oject ID:	ATER WELL INST	ALLA	TION								Eurofin	ns mgt Analytical Se	rvices Manager : Nibha Vaidya			
		Asbestos - AS4964	HOLD	Iron	Polycyclic Aromatic Hydrocarbons	BTEX and Naphthalene	Halogenated Volatile Organics	Moisture Set	Total Recoverable Hydrocarbons	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)							
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271													
Sydi	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	_		
Bris	bane Laborator	y - NATA Site #	20794			<u> </u>											
Pert	h Laboratory - N	NATA Site # 237	36						<u> </u>	\perp							
Exte	rnal Laboratory	/				<u> </u>	<u> </u>	<u> </u>	<u> </u>						_		
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
1	WC1	Dec 06, 2018		Soil	S18-De12968	х		Х	х	Х	х	Х	х	х]		
2	BH1A_0.2	Dec 06, 2018		Soil	S18-De12969		х										
3	BH1A_0.4	Dec 06, 2018		Soil	S18-De12970		х										
4	BH1A_0.5	Dec 06, 2018		Soil	S18-De12971	ļ'	х	<u> </u>		<u> </u>					1		
5	BH1A_1.5	Dec 06, 2018		Soil	S18-De12972	ļ'	х	 	<u> </u>	<u> </u>					1		
6	BH1A_2.0	Dec 06, 2018		Soil	S18-De12973	ļ'	Х	—	<u> </u>	<u> </u>					4		
7	BH1A_2.5	Dec 06, 2018		Soil	S18-De12974	ļ'	Х	──	<u> </u>	<u> </u>					4		
8	BH1A_3.0	Dec 06, 2018		Soil	S18-De12975	ļ'	Х	─	<u> </u>	<u> </u>					4		
9	BH1A_3.5	Dec 06, 2018		Soil	S18-De12976	1 '	Х										

e.mail :			e.mail : Enviro	N– 50 005 085 521 nail : EnviroSales@eurofins.com b : www.eurofins.com.au					ne ston Tov VIC 31 +61 3 85 1261 54 & 14	66 564 500		Syd Unii 16 I Lan Pho NA ⁻	they It F3, Building F Mars Road he Cove West NSW 2066 one : +61 2 9900 8400 TA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 46 NATA # 1261 Site # 20	Perth 2/91 Leach Highway Kewdale WA 6105 00 Phone : +61 8 9251 9600 794 NATA # 1261 Site # 23736
Company Name: Address: Project Name: Project ID:	Address: Level 15, 133 Castlereagh Street Sydney NSW 2000 Project Name: LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTRUCTION					der N port a ione: x:		0	32314 2 923 2 923	9 710	-		Eurofi	Received: Due: Priority: Contact Name: ns I mgt Analytical St	Dec 7, 2018 10:02 AM Dec 14, 2018 5 Day Emma Harrison ervices Manager : Nibha Vaidya
	Sample Detail						Polycyclic Aromatic Hydrocarbons	BTEX and Naphthalene	Halogenated Volatile Organics	Moisture Set	Total Recoverable Hydrocarbons	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)			
Melbourne Laborator	ry - NATA Site	# 1254 & 14271											-		
Sydney Laboratory -				Х	Х	х	х	Х	х	Х	х	Х]		
Brisbane Laboratory	- NATA Site #	20794													
Perth Laboratory - N	ATA Site # 237	36											4		
10 BH1A_4.0	Dec 06, 2018	Soil	S18-De12977		х								-		
	Dec 06, 2018	Soil	S18-De12978		Х	<u> </u>		<u> </u>			<u> </u>		4		
	Dec 06, 2018	Soil	S18-De12979		Х								4		
	Dec 06, 2018	Soil	S18-De12980		X								-		
_	Dec 06, 2018	Soil	S18-De12981		X			-				-	-		
_	Dec 06, 2018	Soil	S18-De12982		X								-		
	Dec 06, 2018	Soil	S18-De12983		X						-		-		
	Dec 06, 2018	Soil	S18-De12984		X								-		
	Dec 06, 2018	Soil	S18-De12985		X						-		-		
	Dec 06, 2018	Soil	S18-De12986		X								-		
	Dec 06, 2018	Soil	S18-De12987		X					<u> </u>			-		
21 BH1A_9.5	Dec 06, 2018	Soil	S18-De12988		Х]		

🔅 euro	ofins	mgt	ABN– 50 005 e.mail : Enviro web : www.eur	085 521 Sales@ rofins.co	eurofins m.au	s.com	2 C P N	lelbourr -5 Kings Dakleigh hone : - IATA # ⁻ ite # 12	ne ston Tov VIC 310 ⊦61 3 85 1261 54 & 14	vn Clos 56 564 500 271	e 10	16 Lar Pho	dney it F3, Building F Mars Road ne Cove West NSW 2066 one : +61 2 9900 8400 \TA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 460 NATA # 1261 Site # 207	Perth 2/91 Leach Highway Kewdale WA 6105 00 Phone : +61 8 9251 9600 794 NATA # 1261 Site # 23736
Company Name: Address: Project Name:	Sydney NSW 2000 LINDFIELD	NSW 3 Castlereagh Street /ILLAGE HUB - GROUNDW	ATER WELL INST	ALLA	Re Ph Fa			0	32314 2 9239 2 9239	9 710				Received: Due: Priority: Contact Name:	Dec 7, 2018 10:02 AM Dec 14, 2018 5 Day Emma Harrison
Project ID:	2127850												Eurofi	ns mgt Analytical Se	ervices Manager : Nibha Vaidya
	Sample Detail							BTEX and Naphthalene	Halogenated Volatile Organics	Moisture Set	Total Recoverable Hydrocarbons	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)			
Melbourne Laborator													_		
Sydney Laboratory -				Х	Х	Х	Х	X	Х	Х	X	Х	4		
Brisbane Laboratory													-		
Perth Laboratory - NA		Soil	S18 Do12080		х								-		
	Dec 06, 2018 Dec 06, 2018	Soil	S18-De12989 S18-De12990		X								-		
	Dec 06, 2018 Dec 06, 2018	Soil	S18-De12990		X							1	-		
_	Dec 06, 2018	Soil	S18-De12991		X							1	-		
Test Counts			12.0 20.2002	1	24	1	1	1	1	1	1	1	1		

Internal Quality Control Review and Glossary

General

1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Terma	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	Quality Systems Manual ver 5.1 US Department of Defense
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	1		н I	1		
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	ons					
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank			· · · · ·			
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank						
Halogenated Volatile Organics						
1.1-Dichloroethane	mg/kg	< 0.5		0.5	Pass	
1.1-Dichloroethene	mg/kg	< 0.5		0.5	Pass	
1.1.1-Trichloroethane	mg/kg	< 0.5		0.5	Pass	
1.1.1.2-Tetrachloroethane	mg/kg	< 0.5		0.5	Pass	
1.1.2-Trichloroethane	mg/kg	< 0.5		0.5	Pass	
1.1.2.2-Tetrachloroethane	mg/kg	< 0.5		0.5	Pass	
1.2-Dibromoethane	mg/kg	< 0.5		0.5	Pass	
1.2-Dichlorobenzene	mg/kg	< 0.5		0.5	Pass	
1.2-Dichloroethane	mg/kg	< 0.5		0.5	Pass	
1.2-Dichloropropane	mg/kg	< 0.5		0.5	Pass	
1.2.3-Trichloropropane	mg/kg	< 0.5		0.5	Pass	
1.3-Dichlorobenzene	mg/kg	< 0.5		0.5	Pass	
1.3-Dichloropropane	mg/kg	< 0.5		0.5	Pass	
1.4-Dichlorobenzene	mg/kg	< 0.5		0.5	Pass	
Bromodichloromethane	mg/kg	< 0.5		0.5	Pass	
Bromoform	mg/kg	< 0.5		0.5	Pass	
Bromomethane	mg/kg	< 0.5		0.5	Pass	
Carbon Tetrachloride	mg/kg	< 0.5		0.5	Pass	
Chlorobenzene	mg/kg	< 0.5		0.5	Pass	
Chloroform	mg/kg	< 0.5		0.5	Pass	
Chloromethane	mg/kg	< 0.5		0.5	Pass	
cis-1.2-Dichloroethene	mg/kg	< 0.5		0.5	Pass	
cis-1.3-Dichloropropene	mg/kg	< 0.5		0.5	Pass	
Dibromochloromethane	mg/kg	< 0.5		0.5	Pass	
Dibromomethane	mg/kg	< 0.5		0.5	Pass	
lodomethane	mg/kg	< 0.5		0.5	Pass	
Methylene Chloride	mg/kg	< 0.5		0.5	Pass	
Tetrachloroethene	mg/kg	< 0.5		0.5	Pass	
trans-1.2-Dichloroethene	mg/kg	< 0.5		0.5	Pass	
trans-1.3-Dichloropropene	mg/kg	< 0.5		0.5	Pass	
Trichloroethene	mg/kg	< 0.5		0.5	Pass	
Trichlorofluoromethane	mg/kg	< 0.5		0.5	Pass	
Vinyl chloride	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	ons					
Naphthalene	mg/kg	< 0.5		0.5	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank						
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank	l llig/kg	< 0.5		0.5	газэ	
Heavy Metals		L				
Arsenic	mg/kg	< 2		2	Pass	
Beryllium	mg/kg	< 2		2	Pass	
Boron		< 10		10	Pass	
Cadmium	mg/kg mg/kg	< 0.4		0.4	Pass	
				<u> </u>	Pass	
Chromium Cobalt	mg/kg	< 5		5	Pass	
	mg/kg	< 5 < 5		5	Pass	
Copper	mg/kg					
Iron	mg/kg	< 20		20	Pass	
Lead	mg/kg	< 5		5	Pass	
Manganese	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Selenium	mg/kg	< 2		2	Pass	
	mg/kg	< 5		5	Pass	
LCS - % Recovery		1			[
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					_	
TRH C6-C9	%	116		70-130	Pass	
TRH C10-C14	%	85		70-130	Pass	
LCS - % Recovery		1				
BTEX	0/			70.400	Dese	
Benzene	%	99		70-130	Pass	
Toluene	%	96		70-130	Pass	
Ethylbenzene	%	112		70-130	Pass	
m&p-Xylenes	%	113		70-130	Pass	
o-Xylene	%	106		70-130	Pass	
Xylenes - Total	%	111		70-130	Pass	
LCS - % Recovery		1				
Halogenated Volatile Organics	1					
1.1-Dichloroethene	%	105		70-130	Pass	
1.1.1-Trichloroethane	%	99		70-130	Pass	

т	est		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
1.2-Dichlorobenzene			%	106		70-130	Pass	
1.2-Dichloroethane			%	98		70-130	Pass	
Trichloroethene			%	99		70-130	Pass	
LCS - % Recovery					1	T	1	
Total Recoverable Hydrocarb	ons - 2013 NEPM Fract	ions						
Naphthalene			%	123		70-130	Pass	
TRH C6-C10			%	118		70-130	Pass	
TRH >C10-C16			%	88		70-130	Pass	
LCS - % Recovery						1		
Polycyclic Aromatic Hydroca	rbons							
Acenaphthene			%	100		70-130	Pass	
Acenaphthylene			%	100		70-130	Pass	
Anthracene			%	106		70-130	Pass	
Benz(a)anthracene			%	105		70-130	Pass	
Benzo(a)pyrene			%	97	<u> </u>	70-130	Pass	
Benzo(b&j)fluoranthene			%	90	<u> </u>	70-130	Pass	
Benzo(g.h.i)perylene			%	105		70-130	Pass	
Benzo(k)fluoranthene			%	100	<u> </u>	70-130	Pass	
Chrysene Diberta b) anthrosome			%	99	<u> </u>	70-130	Pass	
Dibenz(a.h)anthracene			%	107		70-130	Pass	
Fluoranthene			%	96		70-130	Pass	
Fluorene			%	104		70-130	Pass	
Indeno(1.2.3-cd)pyrene			% %	104 94		70-130	Pass	
Naphthalene			%	103		70-130	Pass	
Phenanthrene			%	97		70-130	Pass	
Pyrene LCS - % Recovery			70	97		70-130	Pass	
Heavy Metals						1		
Arsenic			%	109		70-130	Pass	
Beryllium			%	103		70-130	Pass	
Boron			%	103		70-130	Pass	
Cadmium			%	113		70-130	Pass	
Chromium			%	110		70-130	Pass	
Cobalt			%	109		70-130	Pass	
Copper			%	108		70-130	Pass	
Iron			%	109		70-130	Pass	
Lead			%	109		70-130	Pass	
Manganese			%	109		70-130	Pass	
Mercury			%	106		70-130	Pass	
Nickel			%	108		70-130	Pass	
Selenium			%	127		70-130	Pass	
Zinc			%	110		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarb	ons - 1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S18-De13638	NCP	%	95		70-130	Pass	
TRH C10-C14	S18-De20574	NCP	%	94		70-130	Pass	
Spike - % Recovery						1		
BTEX				Result 1				
Benzene	S18-De13638	NCP	%	101		70-130	Pass	
Toluene	S18-De13638	NCP	%	90		70-130	Pass	
Ethylbenzene	S18-De13638	NCP	%	89		70-130	Pass	
m&p-Xylenes	S18-De13638	NCP	%	88		70-130	Pass	
o-Xylene	S18-De13638	NCP	%	89		70-130	Pass	

DuplicateSourceOfficsResult 1Result 2RPDLimitsLimitsTotal Recoverable Hydrocarbons - 1999 NEPM FractionsResult 1Result 2RPDTRH C6-C9S18-De08209NCPmg/kg< 20< 20< 130%PassTRH C10-C14S18-De20573NCPmg/kg< 20< 20< 130%Pass	Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Halogenated Volaille Organics Kesult 1 NC Result 1 NC NC<	Xylenes - Total	S18-De13638	NCP	%	89			70-130	Pass	
1.1-Dichloroschane S18-De16776 NCP % 76 NCP 76 NCP 76 NCP 76 83 70-130 Pass 1 1.1-Dichloroschane S18-De16776 NCP % 83 70-130 Pass 1 1.2-Dichloroschane S18-De16776 NCP % 83 70-130 Pass Spike - % Recovery Trichloroschane S18-De16776 NCP % 80 70-130 Pass TRH ColCol1 S18-De16338 NCP % 96 70-130 Pass Spike - % Recovery S18-De16338 NCP % 96 70-130 Pass Spike - % Recovery S18-De1707 NCP % 111 C 70-130 Pass Spike - % Recovery S18-De11707 NCP % 111 C 70-130 Pass Acenaphthyse S18-De11707 NCP % 111 C 70-130 Pass Benzo(a)ghtysen S18-De11707 NCP % 111 C 70-130 Pass S <tr< th=""><th>Spike - % Recovery</th><th></th><th></th><th></th><th>1</th><th></th><th>-</th><th>1</th><th>r</th><th></th></tr<>	Spike - % Recovery				1		-	1	r	
1.1.1-Irichloroberhane S18-De16776 NCP % 83 NCP 70-130 Pass 1.2-Dichloroberhane S18-De16776 NCP % 83 NCP 70-130 Pass Trichloroberhane S18-De16776 NCP % 83 NCP 70-130 Pass Spike - % Recovery Trichloroberhane S18-De1638 NCP % 96 70-130 Pass Spike - % Recovery S18-De1638 NCP % 96 70-130 Pass Spike - % Recovery FRH 05-C10 S18-De1638 NCP % 96 70-130 Pass Accomaphthysic S18-De11707 NCP % 111 70-130 Pass Accomaphthysic S18-De11707 NCP % 112 70-130 Pass Benzo(a)pyrene S18-De11707 NCP % 112 70-130 Pass Benzo(b,I)pervine S18-De11707 NCP % 105 70-130 Pass Benzo(Halogenated Volatile Organics				Result 1					
1:2-Dichlorobenzene \$18-De16776 NCP % 83 70-130 Pass 1:2-Dichlorobenzene \$18-De16776 NCP % 83 70-130 Pass Spike - % Recovery 518-De16776 NCP % 83 70-130 Pass Spike - % Recovery 518-De15338 NCP % 96 70-130 Pass TRH - 6C-01 S18-De15338 NCP % 96 70-130 Pass Spike - % Recovery Fred-Co16 S18-De10538 NCP % 96 70-130 Pass Spike - % Recovery Fred-Co16 S18-De1707 NCP % 104 70-130 Pass Aconaphthylene S18-De11707 NCP % 111 70-130 Pass Actinacene S18-De11707 NCP % 119 70-130 Pass Benzold/ajanthracene S18-De11707 NCP % 105 70-130 Pass Benzold/jubranthene S18-De11707 NCP % 106 70-130 Pass Benzold/jubranthene S18-	1.1-Dichloroethene	S18-De16776	NCP	%	76			70-130	Pass	
1.2-Dichlorosethane S18-De16776 NCP % 8.3 70-130 Pass Trichlorosethane S18-De16776 NCP % 8.0 70-130 Pass Spike - % Recovery Total Recoverable Hydrocarbons - 2013 NEPM Fractions Result 1 70-130 Pass TRN C6-C10 S18-De13638 NCP % 96 70-130 Pass Spike - % Recovery TRN C6-C10 S18-De13638 NCP % 96 70-130 Pass Spike - % Recovery TRN C6-C10 S18-De1707 NCP % 104 70-130 Pass Acenaphthene S18-De11707 NCP % 104 70-130 Pass Acenaphthene S18-De11707 NCP % 111 70-130 Pass Benzo(a)/prone S18-De11707 NCP % 105 70-130 Pass Benzo(a)/prone S18-De11707 NCP % 106 70-130 Pass Benzo(a)/fluoranthene S18-De11707 NCP % 108 70-130 Pass Benzo(a)/fluoranthene <t< td=""><td>1.1.1-Trichloroethane</td><td>S18-De16776</td><td>NCP</td><td>%</td><td>83</td><td></td><td></td><td>70-130</td><td>Pass</td><td></td></t<>	1.1.1-Trichloroethane	S18-De16776	NCP	%	83			70-130	Pass	
Trichloroethene S18-De16776 NCP % 80 70-130 Pass Spike -% Recovery	1.2-Dichlorobenzene	S18-De16776	NCP	%	83			70-130	Pass	
Spike - % Recovery Result 1 Pass Total Recoverable Hydrocarbons - 2013 NEPM Fractions Result 1 Pass TRH C6C-C10 S18-De13633 NCP % 96 70-130 Pass TRH >C10-C16 S18-De13633 NCP % 96 70-130 Pass Spike - % Recovery 96 70-130 Pass 70-130 Pass Acenaphthone S18-De11707 NCP % 104 70-130 Pass Acenaphthone S18-De11707 NCP % 111 70-130 Pass Benz(a)anthracene S18-De11707 NCP % 119 70-130 Pass Benz(a)anthracene S18-De11707 NCP % 106 70-130 Pass Benzo(a)/jberviene S18-De11707 NCP % 108 70-130 Pass Chrysene S18-De11707 NCP % 108 70-130 Pass Dibenz(a)/jberviene S18-De11707 NCP % 108	1.2-Dichloroethane	S18-De16776	NCP	%	83			70-130	Pass	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions Result 1 Image 1 Total Page 2 Tot-130 Page 2 Naphnhalene S18-De13638 NCP % 96 70-130 Pags 2 TRH C6-C10 S18-De20574 NCP % 96 70-130 Pags 2 Splke - % Recovery F % 96 70-130 Pags 2 Acenaphthene S18-De11707 NCP % 104 70-130 Pags 2 Acenaphthylene S18-De11707 NCP % 111 70-130 Pags 2 Benzo(a)propre S18-De11707 NCP % 1122 70-130 Pags 2 Benzo(a)propre S18-De11707 NCP % 1124 70-130 Pags 2 Benzo(a)propre S18-De11707 NCP % 106 70-130 Pags 2 Benzo(a)propre S18-De11707 NCP % 108 70-130 Pags 2 Chrysene S18-De11707 NCP % 108 70-130 <td< td=""><td>Trichloroethene</td><td>S18-De16776</td><td>NCP</td><td>%</td><td>80</td><td></td><td></td><td>70-130</td><td>Pass</td><td></td></td<>	Trichloroethene	S18-De16776	NCP	%	80			70-130	Pass	
Naphthalene S18-De13638 NCP % 96 (7) 70-130 Pass TRH > C10-C16 S18-De13638 NCP % 96 70-130 Pass Spike - % Recovery Second 1000000000000000000000000000000000000	Spike - % Recovery							-	-	
TRH C6-C10 S18-De13638 NCP % 96 Image of the term of term	Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
TRH > C10-C16 S18-De20574 NCP % 96 (m) 70-130 Pass Spike-* Recovery Result 1 70-130 Pass Acenaphthene S18-De11707 NCP % 104 70-130 Pass Acenaphthylene S18-De11707 NCP % 111 70-130 Pass Acenaphthylene S18-De11707 NCP % 112 70-130 Pass Basz (a) anthracene S18-De11707 NCP % 112 70-130 Pass Basz (a)	Naphthalene	S18-De13638	NCP	%	96			70-130	Pass	
Spike - % Recovery Result N N N Polycyclic Aromatic Hydrocarbons S18-De11707 NCP % 104 N N Pass Acenaphthene S18-De11707 NCP % 1014 N No Pass Acenaphthene S18-De11707 NCP % 1111 Image Pass No Pass Anthracene S18-De11707 NCP % 1109 Image Pass No Pass Pas	TRH C6-C10	S18-De13638	NCP	%	96			70-130	Pass	
Polycyclic Aromatic Hydrocarbons Result 1 Image: Stable 11707 NCP % 104 Image: Stable 11707 Pass Acenaphthylene S18-De11707 NCP % 111 Image: Stable 11707 NCP % 111 Image: Stable 11707 NCP % 1112 Image: Stable 11707 NCP % 1112 Image: Stable 11707 NCP % 1113 Image: Stable 11707 NCP % 106 Image: Stable 11707 NCP % 108 Image: Stable 11707 NCP % 101 Image: Stable 11707 NCP % 111 Image: Stable 11707 NCP % 1	TRH >C10-C16	S18-De20574	NCP	%	96			70-130	Pass	
Acenaphthene S18-De11707 NCP % 104 Image: Stand	Spike - % Recovery								_	
Acenaphthylene S18-De11707 NCP % 111 Image: Stand Sta	Polycyclic Aromatic Hydrocarbons	3			Result 1					
Anthracene S18-De11707 NCP % 122 Image: Stamp of the	Acenaphthene	S18-De11707	NCP	%	104			70-130	Pass	
Benz(a)anthracene S18-De11707 NCP % 119 I 70-130 Pass Benzo(a)pyrene S18-De11707 NCP % 105 I 70-130 Pass I Benzo(a)pyrene S18-De11707 NCP % 106 I 70-130 Pass I Benzo(a)pyrene S18-De11707 NCP % 106 I 70-130 Pass I Benzo(a)pyrene S18-De11707 NCP % 108 I 70-130 Pass I Dibenz(a)nihracene S18-De11707 NCP % 108 I 70-130 Pass I Fluoranthene S18-De11707 NCP % 111 I I 70-130 Pass I Indeno(1.2.3-cd)pyrene S18-De11707 NCP % 107 I 70-130 Pass I Indeno(1.2.3-cd)pyrene S18-De11707 NCP % 108 I 70-130 Pass I Indeno(1.2.3-cd)pyrene	Acenaphthylene	S18-De11707	NCP	%	111			70-130	Pass	
Benzo(a)pyrene S18-De11707 NCP % 105 Image: State of the state of	Anthracene	S18-De11707	NCP	%	122			70-130	Pass	
Benzo(b&i)fluoranthene S18-De11707 NCP % 124 Image: State of the s	Benz(a)anthracene	S18-De11707	NCP	%	119			70-130	Pass	
Benzo(g,h.i)perylene S18-De11707 NCP % 106 (m) 70-130 Pass D Benzo(k)fluoranthene S18-De11707 NCP % 90 (m) 70-130 Pass D Chrysene S18-De11707 NCP % 108 (m) 70-130 Pass D Dibenz(a,h)anthracene S18-De11707 NCP % 1113 (m) 70-130 Pass D Fluorene S18-De11707 NCP % 1111 (m) 70-130 Pass D Indeno(1.2.3-cd)pyrene S18-De11707 NCP % 107 C 70-130 Pass D Phenanthrene S18-De11707 NCP % 107 C 70-130 Pass D Pyrene S18-De11707 NCP % 107 C 70-130 Pass D Arsenic S18-De1607 NCP % 87 C 70-130 Pass D	Benzo(a)pyrene	S18-De11707	NCP	%	105			70-130	Pass	
Benzo(g,h.i)perylene S18-De11707 NCP % 106 (m) 70-130 Pass D Benzo(k)fluoranthene S18-De11707 NCP % 90 (m) 70-130 Pass D Chrysene S18-De11707 NCP % 108 (m) 70-130 Pass D Dibenz(a/h)anthracene S18-De11707 NCP % 1113 (m) 70-130 Pass D Fluorene S18-De11707 NCP % 1111 (m) 70-130 Pass D Naphthalene S18-De11707 NCP % 107 (m) 70-130 Pass D Pyrene S18-De11707 NCP % 107 (m) 70-130 Pass D Pyrene S18-De11707 NCP % 107 (m) 70-130 Pass D Arsenic S18-De1807 NCP % 107 108 C 70-130 Pass D <t< td=""><td>Benzo(b&j)fluoranthene</td><td>S18-De11707</td><td>NCP</td><td>%</td><td>124</td><td></td><td></td><td>70-130</td><td>Pass</td><td></td></t<>	Benzo(b&j)fluoranthene	S18-De11707	NCP	%	124			70-130	Pass	
ChryseneS18-De11707NCP%108(m)70-130Pass7Diberz(a.h)anthraceneS18-De11707NCP%109(m)70-130Pass7FluorantheneS18-De11707NCP%111(m)70-130Pass7FluoreneS18-De11707NCP%111(m)70-130Pass7Inden(1.2.3-cd)pyreneS18-De11707NCP%107(m)70-130Pass7NaphthaleneS18-De11707NCP%108(m)70-130Pass7PyreneS18-De11707NCP%108(m)70-130Pass7Spike -// SecoveryS18-De11707NCP%108(m)70-130Pass7Spike -// SecoveryS18-De11707NCP%108(m)70-130Pass7Spike -// SecoveryS18-De11707NCP%108(m)70-130Pass7ArsenicS18-De13805NCP%108(m)70-130Pass7BerylliumS18-De16802NCP%110(m)70-130Pass7CadmiumS18-De1805NCP%100(m)70-130Pass7CadmiumS18-De1805NCP%110(m)70-130Pass7CadmiumS18-De1805NCP%110(m)70-130Pass7CadmiumS18-De180		S18-De11707	NCP	%	106			70-130	Pass	
ChryseneS18-De11707NCP%108(m)70-130Pass7Diberz(a.h)anthraceneS18-De11707NCP%109(m)70-130Pass7FluorantheneS18-De11707NCP%111(m)70-130Pass7FluoreneS18-De11707NCP%111(m)70-130Pass7Inden(1.2.3-cd)pyreneS18-De11707NCP%107(m)70-130Pass7NaphthaleneS18-De11707NCP%108(m)70-130Pass7PyreneS18-De11707NCP%108(m)70-130Pass7Spike -// SecoveryS18-De11707NCP%108(m)70-130Pass7Spike -// SecoveryS18-De11707NCP%108(m)70-130Pass7Spike -// SecoveryS18-De11707NCP%108(m)70-130Pass7ArsenicS18-De13805NCP%108(m)70-130Pass7BerylliumS18-De16802NCP%110(m)70-130Pass7CadmiumS18-De1805NCP%100(m)70-130Pass7CadmiumS18-De1805NCP%110(m)70-130Pass7CadmiumS18-De1805NCP%110(m)70-130Pass7CadmiumS18-De180	Benzo(k)fluoranthene	S18-De11707	NCP	%	90			70-130	Pass	
Dibenz(a.h)anthraceneS18-De11707NCP%109(70-130Pass7FluorantheneS18-De11707NCP%1113((70-130Pass7FluorantheneS18-De11707NCP%1117((70-130Pass7Indeno(1.2.3-cd)pyreneS18-De11707NCP%98(70-130Pass7MaphthaleneS18-De11707NCP%98(70-130Pass7PhenanthreneS18-De11707NCP%108(770-130Pass7PyreneS18-De11707NCP%108(770-130Pass7Spite-% RecoveryS18-De11707NCP%108(770-130Pass7ArsenicS18-De13805NCP%108(770-130Pass7ArsenicS18-De16802NCP%108(770-130Pass7BeryllinmS18-De13805NCP%100(770-130Pass7CadmiumS18-De13805NCP%100((70-130Pass1CobaltS18-De13805NCP%100((70-130Pass1CobaltS18-De13805NCP%100((70-130Pass1CobaltS18-De13805NCP%101((<		S18-De11707	NCP	%	108			70-130	Pass	
Fluorene S18-De11707 NCP % 111 (moder) 70-130 Pass Indeno(1.2.3-cd)pyrene S18-De11707 NCP % 107 (moder) 70-130 Pass Pass Naphthalene S18-De11707 NCP % 98 (moder) 70-130 Pass Pass Phenanthrene S18-De11707 NCP % 108 (moder) 70-130 Pass Pass Spike -% Recovery NCP % 107 (moder) 70-130 Pass Pass Arsenic S18-De13805 NCP % 87 (moder) 70-130 Pass Beryllium S18-De16692 NCP % 108 (moder) 70-130 Pass 93 Cadmium S18-De16692 NCP % 101 (moder) 70-130 Pass 93 Cobalt S18-De13805 NCP % 101 (moder) 70-130 Pass 93 Copper S		S18-De11707	NCP		109			70-130	Pass	
Fluorene S18-De11707 NCP % 111 70-130 Pass Indeno(1.2.3-cd)pyrene S18-De11707 NCP % 107 70-130 Pass Naphthalene S18-De11707 NCP % 98 70-130 Pass Pass Phenanthrene S18-De11707 NCP % 108 70-130 Pass Pass Spike -% Recovery S18-De11707 NCP % 108 70-130 Pass Siss Spike -% Recovery Tot 70-130 Pass Siss Siss Siss Pass Siss Siss Siss Siss Siss Siss			NCP	%	113			70-130		
Indeno(1.2.3-cd)pyrene S18-De11707 NCP % 107 Image: Stand St	Fluorene		NCP	%	111			70-130		
Naphthalene S18-De11707 NCP % 98 70-130 Pass Pass Phenanthrene S18-De11707 NCP % 108 70-130 Pass Pyrene S18-De11707 NCP % 107 70-130 Pass Spike - % Recovery Result 1 70-130 Pass Heary Metals S18-De13805 NCP % 87 70-130 Pass Beryllium S18-De13805 NCP % 108 70-130 Pass Cadmium S18-De16802 NCP % 101 70-130 Pass Cadmium S18-De13805 NCP % 100	Indeno(1.2.3-cd)pyrene		NCP		107					
Phenanthrene S18-De11707 NCP % 108 70-130 Pass Pyrene S18-De11707 NCP % 107 70-130 Pass S Spike - % Recovery Result 1 70-130 Pass S Heavy Metals Result 1 70-130 Pass S Beryllium S18-De16692 NCP % 87 70-130 Pass S Boron S18-De16692 NCP % 108 70-130 Pass S Cadmium S18-De13805 NCP % 107 70-130 Pass S Cobalt S18-De13805 NCP % 100 70-130 Pass S Cobalt S18-De13805 NCP % 109 70-130 Pass S Lead S18-De13805 NCP % 104 70-130 Pass S Selenium S18-De13805 NCP		S18-De11707	NCP	%	98			70-130	Pass	
PyreneS18-De11707NCP%107I7070-130Pass7Spike - % RecoveryHeavy MetalsS18-De13805NCP%87III70-130Pass7ArsenicS18-De13805NCP%87III70-130Pass7BerylliumS18-De16692NCP%1010II70-130Pass7BoronS18-De16692NCP%110II70-130Pass7CadmiumS18-De13805NCP%100II70-130Pass7CadmiumS18-De13805NCP%1017II70-130Pass7CobaltS18-De13805NCP%100II70-130Pass1CobaltS18-De13805NCP%1019II70-130Pass1CobaltS18-De13805NCP%1019II70-130Pass1LeadS18-De13805NCP%1014II70-130Pass1IcadeS18-De13805NCP%1014II70-130Pass1IcadeS18-De13805NCP%1014IIIIIIIIIIIIIIIIIIIIIIII	Phenanthrene	S18-De11707	NCP	%	108			70-130	Pass	
Spike - % RecoverySpike - % RecoverySpike - % RecoveryResult 1II	Pyrene				107					
Heavy Metals Result 1 Image: Constraint of the symbol of			<u> </u>			·				
Arsenic S18-De13805 NCP % 87 70-130 Pass Beryllium S18-De16692 NCP % 108 70-130 Pass Boron S18-De16692 NCP % 110 70-130 Pass Cadmium S18-De13805 NCP % 107 70-130 Pass Chromium S18-De13805 NCP % 100 70-130 Pass Cobalt S18-De13805 NCP % 100 70-130 Pass Copper S18-De13805 NCP % 109 70-130 Pass Lead S18-De13805 NCP % 104 70-130 Pass Nickel S18-De13805 NCP % 111	I				Result 1					
Beryllium S18-De16692 NCP % 108 Image: Constraint of the state of		S18-De13805	NCP	%				70-130	Pass	
Boron S18-De16692 NCP % 110 Image: Mode Marcine Ma										
CadmiumS18-De13805NCP%107I70-130PassAChromiumS18-De13805NCP%100II70-130PassACobaltS18-De16692NCP%115II70-130PassACopperS18-De13805NCP%109II70-130PassALeadS18-De13805NCP%104II70-130PassAMercuryS18-De13805NCP%114II70-130PassANickelS18-De13805NCP%114II70-130PassASeleniumS18-De13805NCP%114II70-130PassASeleniumS18-De13805NCP%1114IIIPassASeleniumS18-De13805NCP%1114IIPassAAZincS18-De13805NCP%1111IIPassAA <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
Chromium S18-De13805 NCP % 100 Image: Component of the state of th					107					
Cobalt S18-De16692 NCP % 115 I 70-130 Pass I Copper S18-De13805 NCP % 109 I 70-130 Pass I Lead S18-De13805 NCP % 104 I I 70-130 Pass I Mercury S18-De13805 NCP % 104 I I 70-130 Pass I Nickel S18-De13805 NCP % 104 I I 70-130 Pass I Selenium S18-De13805 NCP % 109 I										
Copper S18-De13805 NCP % 109 Ice 70-130 Pass Ice Lead S18-De13805 NCP % 104 Ice 70-130 Pass Ice Mercury S18-De13805 NCP % 114 Ice 70-130 Pass Ice Nickel S18-De13805 NCP % 109 Ice 70-130 Pass Ice Selenium S18-De13805 NCP % 109 Ice 70-130 Pass Ice Zinc S18-De16692 NCP % 123 Ice 70-130 Pass Ice Test S18-De13805 NCP % 111 Ice 70-130 Pass Ice Jinc S18-De13805 NCP % 1111 Ice 70-130 Pass Ice Jinc Lab Sample ID QA Junits Result 1 Ice Ice Ice Ice Ice Ice Ice										
Lead S18-De13805 NCP % 104 Image: Marcing transmission of transmissind transmission of transmissin										
Mercury S18-De13805 NCP % 114 Image: Marcine Marci										
Nickel S18-De13805 NCP % 109 Ick 70-130 Pass Ick Selenium S18-De16692 NCP % 123 Ick 70-130 Pass Ick Ick 70-130 Pass Ick Ick Ick 70-130 Pass Ick Ick Ick 70-130 Pass Ick										
SeleniumS18-De16692NCP%123Image: S18-De13805PassPassZincS18-De13805NCP%111Image: S18-De13805PassPassPassTestLab Sample IDQA SourceUnitsResult 1Image: S18-De13805Result 1Result 2RPDPassQuestDuplicateTotal Recoverable Hydrocarbons - 1999 NEPM FractionsResult 1Result 1Result 2RPDImage: S18-De08209NCPmg/kg<20<20<130%PassImage: S18-De08209Result 3Result 2RPDImage: S18-De08209Result 3Result 3Result 2RPDImage: S18-De08209Result 3Result 3										
ZincS18-De13805NCP%111Image: S18-De13805PassPassTestLab Sample IDQA SourceUnitsResult 1Image: S18-De13805PassQuestDuplicateTotal Recoverable Hydrocarbons - J999 NEPM FractionsTRH C6-C9S18-De08209NCPmg/kg<20<200<1130%Pass<11TRH C10-C14S18-De20573NCPmg/kg<200<200<1130%Pass<11										
TestLab Sample IDQA SourceUnitsResult 1Image: Comparison of the compariso										
Duplicate Result 1 Result 2 RPD M Pass TRH C6-C9 S18-De08209 NCP mg/kg <20			QA					Acceptance	Pass	Qualifying
Total Recoverable Hydrocarbons - 1999 NEPM Fractions Result 1 Result 2 RPD Image: Constraint of the state of		-	Source						Linits	Code
TRH C6-C9 S18-De08209 NCP mg/kg < 20 < 20 < 1 30% Pass TRH C10-C14 S18-De20573 NCP mg/kg < 20	•		ione		Decult 1	Deput 0	000			
TRH C10-C14 S18-De20573 NCP mg/kg < 20 < 20 < 1 30% Pass	F		1	m a //				2007	Dess	
TRH C15-C28 S18-De20573 NCP mg/kg < 50 < 50 < 1 30% Pass TRH C29-C36 S18-De20573 NCP mg/kg < 50										

Duplicate									
BTEX				Result 1	Result 2	RPD	1		
Benzene	S18-De08209	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S18-De08209	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S18-De08209	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S18-De08209	NCP	mg/kg	< 0.2	< 0.1	<1	30%	Pass	
o-Xylene	S18-De08209	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Xylenes - Total	S18-De08209	NCP		< 0.1	< 0.1	<1	30%	Pass	
Duplicate	310-De06209	INCE	mg/kg	< 0.5	< 0.5	<1	30%	F d 5 5	
Halogenated Volatile Organics				Result 1	Result 2	RPD			
1.1-Dichloroethane	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1-Dichloroethene	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.1-Trichloroethane	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.1.2-Tetrachloroethane	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.2-Trichloroethane	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.2.2-Tetrachloroethane	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dibromoethane	S18-De16771	NCP		< 0.5	< 0.5	<1	30%	Pass	
1.2-Dibromoetnane	S18-De16771	NCP	mg/kg mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichloroethane	S18-De16771	NCP		< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichloropropane		NCP	mg/kg			<1			
1.2.3-Trichloropropane	S18-De16771 S18-De16771	NCP	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1	30% 30%	Pass Pass	
		NCP	mg/kg			<1			
1.3-Dichlorobenzene	S18-De16771		mg/kg	< 0.5	< 0.5		30%	Pass	
1.3-Dichloropropane	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.4-Dichlorobenzene	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromodichloromethane	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromoform	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromomethane	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Carbon Tetrachloride	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chlorobenzene	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloroform	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloromethane	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
cis-1.2-Dichloroethene	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
cis-1.3-Dichloropropene	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromochloromethane	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromomethane	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
lodomethane	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Methylene Chloride	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Tetrachloroethene	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
trans-1.2-Dichloroethene	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
trans-1.3-Dichloropropene	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichloroethene	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichlorofluoromethane	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Vinyl chloride	S18-De16771	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				1	1		1	1	
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S18-De08209	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S18-De08209	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S18-De20573	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S18-De20573	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S18-De20573	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				1			1		
Polycyclic Aromatic Hydrocarbon	s	1		Result 1	Result 2	RPD			
Acenaphthene	S18-De11141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S18-De11141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S18-De11141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S18-De11141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Polycyclic Aromatic Hydrocart	oons			Result 1	Result 2	RPD			
Benzo(a)pyrene	S18-De11141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S18-De11141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S18-De11141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S18-De11141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S18-De11141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S18-De11141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S18-De11141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S18-De11141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S18-De11141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S18-De11141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S18-De11141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S18-De11141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Hea∨y Metals				Result 1	Result 2	RPD			
Arsenic	S18-De13804	NCP	mg/kg	4.3	5.2	20	30%	Pass	
Beryllium	S18-De16691	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Boron	S18-De16691	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Cadmium	S18-De13649	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-De13804	NCP	mg/kg	14	14	3.0	30%	Pass	
Cobalt	S18-De16691	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	S18-De13804	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	S18-De13804	NCP	mg/kg	33	34	2.0	30%	Pass	
Manganese	S18-De16691	NCP	mg/kg	140	150	10	30%	Pass	
Mercury	S18-De16691	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S18-De13804	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Selenium	S18-De16691	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Zinc	S18-De13804	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S18-De13825	NCP	%	7.8	8.2	5.0	30%	Pass	

Comments

Eurofins | mgt accreditation number 1261, corporate site 1254 and 14271 is currently in progress of a controlled transition to a new custom built location at 6 Monterey Road, Dandenong South, Victoria 3175. All results on this report denoted as being performed by Eurofins | mgt 2-5 Kingston Town Close, Oakleigh Victoria 3166 corporate site 1254, will have been performed on either Oakleigh or new Dandenong South site.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Nibha Vaidya	Analytical Services Manager
Andrew Sullivan	Senior Analyst-Organic (NSW)
Gabriele Cordero	Senior Analyst-Metal (NSW)
Nibha Vaidya	Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofines [mg] shall not be liable for [css, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofine is mg be liable for consequential damages including, but not initianted to, its protection, and angle or trained to meet and the production assisting from the isoper. This document shall not be reported execution that instruction.

Certificate of Analysis

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Report Project Name Project ID Received Date Date Reported	Emma Harrison 632314-AID LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTALLATION 2127850 Dec 07, 2018 Dec 17, 2018
Methodology: Asbestos Fibre Identification	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.
Unknown Mineral Fibres	Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity. NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.
Subsampling Soil Samples	The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed. NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.
Limit of Reporting	The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01% " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project NameLINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTALLATIONProject ID2127850Date SampledDec 06, 2018Report632314-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result	
WC1	18-De12968	Dec 06, 2018	Sample consisted of: Grey fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.	

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Asbestos - LTM-ASB-8020 Testing SiteExtractedHolding TimeSydneyDec 11, 2018Indefinite

	euro	ofins	mgt			ABN – e.mail web : v	50 005 : Enviros www.eur	085 52 Sales@ ofins.co	1 eurofins om.au	s.com		Oakleig	gston T gh VIC 3 : +61 3 # 1261	8564 5000	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Murarrie QLD 4 Phone : +61 7 3 NATA # 1261 S	172 902 4600	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736
	mpany Name: GHD Pty Ltd NSW dress: Level 15, 133 Castlereagh Street Sydney NSW 2000 ject Name: LINDFIELD VILLAGE HUB - GROUNDWATER WELD ject ID: 2127850 Sample Detail Sample Detail Durne Laboratory - NATA Site # 1254 & 14271 ey Laboratory - NATA Site # 1257 Sample Detail Durne Laboratory - NATA Site # 20794 Laboratory - NATA Site # 20794 Laboratory - NATA Site # 23736 mane Laboratory - NATA Site # 23736 mane Laboratory - NATA Site # 20794 Sample ID Sample Sample Soil Site # 20794 Laboratory - NATA Site # 20794 Laboratory - NATA Site # 20794							4 Due: Dec 39 7100 Priority: 5 Da				Dec 7, 20 Dec 14, 2 5 Day Emma Ha						
Project Name: LINDFIELD VILLAGE HUB - GROUNDWATER WELL INS							TION								Eurofins mgt Analytical Services Manager : Nibha Vai			
		Sa	mple Detail			Asbestos - AS4964	HOLD	Iron	Polycyclic Aromatic Hydrocarbons	BTEX and Naphthalene	Halogenated Volatile Organics	Moisture Set	Total Recoverable Hydrocarbons	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)				
				271														
						X	X	X	Х	X	Х	Х	X	Х				
														$\left \right $				
			736															
Exte No			Sampling	Matrix	LAB ID									+				
		Sumpre Bule	Time	matrix														
1	WC1				S18-De12968	Х		Х	X	Х	Х	X	X	X				
2					S18-De12969		X	<u> </u>										
					S18-De12970		X							 				
					S18-De12971		X	<u> </u>										
					S18-De12972		X					<u> </u>		$\left \right $				
6					S18-De12973		X											
7					S18-De12974		X			<u> </u>				┼──┤				
8					S18-De12975		X											
9	BH1A_3.5	Dec 06, 2018		501	S18-De12976		Х											

🔅 euro	ofins	mgt		ABN – e.mail web : v	50 005 : Enviros www.eur	085 52 Sales@ ofins.co	1 eurofins om.au	s.com		Oakleig	gston T gh VIC 3 : +61 3 # 1261	8564 5000	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwo Murarrie QLD Phone : +61 NATA # 1261	0 4172	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736
Company Name: Address:	GHD Pty Ltd N Level 15, 133 Sydney NSW 2000	ISW Castlereagh Street			Re	der N port one: x:	#:	0	32314 2 923 2 923	9 710			Receive Due: Priority: Contact	:	Dec 7, 20 Dec 14, 2 5 Day Emma Ha	
Project Name: Project ID:	LINDFIELD VI 2127850	LLAGE HUB - GROUNE	WATER WELL INST	FALLA	TION								Eurofins mgt A	Analytical S	Services Mar	nager : Nibha Vaidya
	Sam	ple Detail		Asbestos - AS4964	HOLD	Iron	Polycyclic Aromatic Hydrocarbons	BTEX and Naphthalene	Halogenated Volatile Organics	Moisture Set	Total Recoverable Hydrocarbons	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)				
Melbourne Laborate																
Sydney Laboratory				Х	X	Х	X	Х	Х	Х	X	x				
Brisbane Laborator																
Perth Laboratory - I 10 BH1A_4.0		6 Soil	S18-De12977		x				-							
10 BH1A_4.0 11 BH1A_4.5	Dec 06, 2018 Dec 06, 2018	Soil	S18-De12977		X		-									
12 BH1A 5.0	Dec 06, 2018	Soil	S18-De12979		X											
13 BH1A_5.5	Dec 06, 2018	Soil	S18-De12980		X											
14 BH1A_6.0	Dec 06, 2018	Soil	S18-De12981		X											
15 BH1A 6.5	Dec 06, 2018	Soil	S18-De12982		X											
16 BH1A_7.0	Dec 06, 2018	Soil	S18-De12983		X		1									
17 BH1A_7.5	Dec 06, 2018	Soil	S18-De12984		х		1									
18 BH1A_8.0	Dec 06, 2018	Soil	S18-De12985		х		1									
19 BH1A_8.5	Dec 06, 2018	Soil	S18-De12986		Х											
20 BH1A_9.0	Dec 06, 2018	Soil	S18-De12987		х											
21 BH1A_9.5	Dec 06, 2018	Soil	S18-De12988	1	Х					1						

🔅 euro	ofins	mgt			ABN – e.mail : web : v	50 005 : Enviro vww.eur	085 521 Sales@ rofins.co	1 eurofins om.au	s.com		Oakleig	gston 1 h VIC : +61 3 # 1261	8564 5000	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood F Murarrie QLD 41 Phone : +61 7 39 NATA # 1261 Site	72 02 4600	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736
Company Name: Address: Project Name:	Sydney NSW 2000	3 Castlereagh		/ATER WELL INS	TALLA	Re Ph Fa		#:	0		4 9 710 9 719			Receive Due: Priority Contact	: 4	Dec 7, 20 Dec 14, 2 5 Day Emma Ha	
Project ID:	2127850													Eurofins mgt #	Analytical Serv	vices Mar	nager : Nibha Vaidya
	Sar	mple Detail			Asbestos - AS4964	HOLD	Iron	Polycyclic Aromatic Hydrocarbons	BTEX and Naphthalene	Halogenated Volatile Organics	Moisture Set	Total Recoverable Hydrocarbons	NEPM 2013 Metals without Cr6+ (As, Be, B, Cd, Co, Cr, Cu, Hg, Pb, Ni, Mn, Se, Zn)				
Melbourne Laborator			71				<u> </u>										
Sydney Laboratory - Brisbane Laboratory					X	X	X	Х	X	X	X	X	X				
Perth Laboratory - N/					-		<u> </u>						+				
	Dec 06, 2018		Soil	S18-De12989		X											
	Dec 06, 2018		Soil	S18-De12990		х											
	Dec 06, 2018		Soil	S18-De12991		Х											
	Dec 06, 2018		Soil	S18-De12992		Х											
Test Counts					1	24	1	1	1	1	1	1	1				

Internal Quality Control Review and Glossary General

1. QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

mgt

Units

•••••		
% w/w: weight for weight	nt basis	grams per kilogram
Filter loading:		fibres/100 graticule areas
Reported Concentration	r.	fibres/mL
Flowrate:		L/min
Terms		
Dry	Sample is dried by heating prior to analysis	
LOR	Limit of Reporting	
COC	Chain of Custody	
SRA	Sample Receipt Advice	
ISO	International Standards Organisation	
AS	Australian Standards	
WA DOH		tralia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)
NEPM	National Environment Protection (Assessment of Site Contamina	tion) Measure, 2013 (as amended)
ACM	Asbestos Containing Materials. Asbestos contained within a non- NEPM, ACM is generally restricted to those materials that do not	asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the pass a 7mm x 7mm sieve.
AF	Asbestos Fines. Asbestos containing materials, including friable, equivalent to "non-bonded / friable".	weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as
FA	Fibrous Asbestos. Asbestos containing materials in a friable and/ materials that do not pass a 7mm x 7mm sieve.	or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those
Friable	Asbestos-containing materials of any size that may be broken or outside of the laboratory's remit to assess degree of friability.	crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is
Trace Analysis	Analytical procedure used to detect the presence of respirable fib	res in the matrix.

Comments

The sample received was not collected in an approved asbestos bag and was therefore sub-sampled from the 250mL glass jar. Valid subsampling procedures were applied so as to ensure that the sub-sample to be analysed accurately represented the sample received.

Eurofins | mgt accreditation number 1261, corporate site 1254 and 14271 is currently in progress of a controlled transition to a new custom built location at 6 Monterey Road, Dandenong South, Victoria 3175. All results on this report denoted as being performed by Eurofins | mgt 2-5 Kingston Town Close, Oakleigh Victoria 3166 corporate site 1254, will have been performed on either Oakleigh or new Dandenong South site.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

CodeDescriptionN/ANot applicable

Asbestos Counter/Identifier:

Sayeed Abu

Senior Analyst-Asbestos (NSW)

Authorised by:

Laxman Dias

Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Enviro Sample NSW

To: Subject: Nibha Vaidya; COC NSW RE: TCLP request for Lindfield project 2127850

From: Nibha Vaidya Sent: Tuesday, 18 December 2018 2:53 PM To: Enviro Sample NSW; COC NSW Subject: FW: TCLP request for Lindfield project 2127850

Additional TCLP Ni please

Kind Regards,

Nibha Vaidya Phone : +61 2 9900 8415 Mobile : +61 499 900 805 Email : <u>NibhaVaidya@eurofins.com</u>

From: Emma.Harrison@ghd.com [mailto:Emma.Harrison@ghd.com] Sent: Tuesday, 18 December 2018 2:06 PM To: Nibha Vaidya Subject: RE: TCLP request for Lindfield project 2127850

EXTERNAL EMAIL*

Hi Nibha,

I'm not sure if you do the TCLPs for individual metals, but if so, we are interested in the nickel levels for this sample.

Many thanks Emma

From: Emma Harrison Sent: Tuesday, 18 December 2018 2:01 PM To: 'Nibha Vaidya' <<u>NibhaVaidya@eurofins.com</u>> Subject: TCLP request for Lindfield project 2127850

Hi Nibha,

Would you please arrange TCLP for metals on sample WC1 for the Lindfield Village Hub – Groundwater well installation project number 2127850?

The original analyses were part of Eurofins report 632314-S. Are we able to get the results before the 7th of January?

Please let me know if you need any further information.

Many thanks, Emma

Emma Harrison Senior Environmental Geologist

GHD Proudly employee owned T: +61 2 9239 7910 | V: 217910 | M: +61 408 401 511 | E: emma.harrison@ghd.com Level 15 133 Castlereagh Street Sydney NSW 2000 Australia | www.ghd.com

WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION

Please consider our environment before printing this email

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.

Click here to report this email as spam.

ScannedByWebsenseForEurofins

* WARNING - EXTERNAL: This email originated from outside of Eurofins. Do not click any links or open any attachments unless you trust the sender and know that the content is safe!

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

web : www.eurofins.com.au

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 4 NATA # 1261 Site # 23736

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com

Sample Receipt Advice

Company name:	GHD Pty Ltd NSW
---------------	-----------------

Contact name:Emma HarrisonProject name:ADDITIONAL - LINDFIELD VILLAGE HUB - GROUNDWATER WELLProject ID:INSTRUCTIONCOC number:Not providedTurn around time:7 DayDate/Time received:Dec 18, 2018 2:06 PMEurofins | mgt reference:634033

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Emma Harrison - emma.harrison@ghd.com.

38 Years of Environmental Analysis & Experience

e.ma	– 50 005 085 521 ail : EnviroSales@eurof : www.eurofins.com.au	Melbourne Sydney 2-5 Kingston Town Close Unit F3, Build Oakleigh VIC 3166 16 Mars Roac Phone : +61 3 8564 5000 Lane Cove W xom NATA # 1261 Phone : +61 2 Site # 1254 & 14271 NATA # 1261	d Murarrie QLD 4172 Kewdale WA 6105 /est NSW 2066 Phone : +61 7 3902 4600 Phone : +61 8 9251 9600 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261
Company Name: GHD Pty Ltd NSW Address: Level 15, 133 Castlereagh Street Sydney NSW 2000 Project Name: ADDITIONAL - LINDFIELD VILLAGE HUB - GROUP Project ID: 2127850	F F F	ler No.: port #: 634033 pne: 02 9239 7100 :: 02 9239 7199 ISTALLATION	Received:Dec 18, 2018 2:06 PMDue:Dec 31, 2018Priority:7 DayContact Name:Emma HarrisonEurofins mgt Analytical Services Manager : Nibha Vaidya
Sample Detail	USA Leaching Procedure Nickel		
Melbourne Laboratory - NATA Site # 1254 & 14271			
Sydney Laboratory - NATA Site # 18217	X X		
Brisbane Laboratory - NATA Site # 20794 Perth Laboratory - NATA Site # 23736			
External Laboratory			
No Sample ID Sample Date Sampling Matrix LAB			
1 WC1 Dec 06, 2018 US Leachate S18-De2	27113 X X		
Test Counts	1 1		

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Emma Harrison

mgt

Report Project name Project ID **Received Date** 634033-L

ADDITIONAL - LINDFIELD VILLAGE HUB - GROUNDWATER WELL INSTALLATION 2127850 Dec 18, 2018

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			WC1 US Leachate S18-De27113 Dec 06, 2018
Test/Reference	LOR	Unit	··· · , ···
Heavy Metals			
Nickel	0.05	mg/L	0.14
USA Leaching Procedure			
Leachate Fluid ^{C01}		comment	1.0
pH (initial)	0.1	pH Units	7.2
pH (off)	0.1	pH Units	5.1
pH (USA HCI addition)	0.1	pH Units	1.8

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

mgt

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Sydney	Dec 28, 2018	180 Day
- Method: USA Leaching Procedure	Sydney	Dec 21, 2018	14 Day

- Method:

Construction end of the second	ABN– 50 005 e.mail : Envirc web : www.eu	Sales@	eurofins.	Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 m NATA # 1261 Site # 1254 & 14271	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 2075	Perth 2/91 Leach Highway Kewdale WA 6105 9 Phone : +61 8 9251 9600 94 NATA # 1261 Site # 23736
Company Name: GHD Pty Ltd NSW Address: Level 15, 133 Castlereagh Street Sydney NSW 2000 Project Name: ADDITIONAL - LINDFIELD VILLAGE H Project ID: 2127850	JB - GROUNDWA	TER W	Rej Pho Fax	02 9239 7199		Received: Due: Priority: Contact Name:	Dec 18, 2018 2:06 PM Dec 31, 2018 7 Day Emma Harrison
Sample Detail			USA Leaching Procedure		Eurofir	ıs mgt Analytical Ser	rvices Manager : Nibha Vaidya
Melbourne Laboratory - NATA Site # 1254 & 14271		x	x				
Sydney Laboratory - NATA Site # 18217							
Brisbane Laboratory - NATA Site # 20794 Perth Laboratory - NATA Site # 23736			$\left - \right $				
External Laboratory							
No Sample ID Sample Date Sampling Time Matrix	LAB ID						
1 WC1 Dec 06, 2018 US Leachate	S18-De27113	х	х				
Test Counts		1	1				

Internal Quality Control Review and Glossary

General

1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

i ci ilia	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
coc	Chain of Custody
SRA	Sample Receipt Advice
QSM	Quality Systems Manual ver 5.1 US Department of Defense
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Nickel			mg/L	< 0.05			0.05	Pass	
LCS - % Recovery									
Heavy Metals									
Nickel			%	98			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Nickel	S18-De25490	NCP	%	94			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Nickel	S18-De27113	CP	mg/L	0.14	0.14	5.0	30%	Pass	

mgt

Comments

Eurofins | mgt accreditation number 1261, corporate site 1254 and 14271 is currently in progress of a controlled transition to a new custom built location at 6 Monterey Road, Dandenong South, Victoria 3175. All results on this report denoted as being performed by Eurofins | mgt 2-5 Kingston Town Close, Oakleigh Victoria 3166 corporate site 1254, will have been performed on either Oakleigh or new Dandenong South site.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

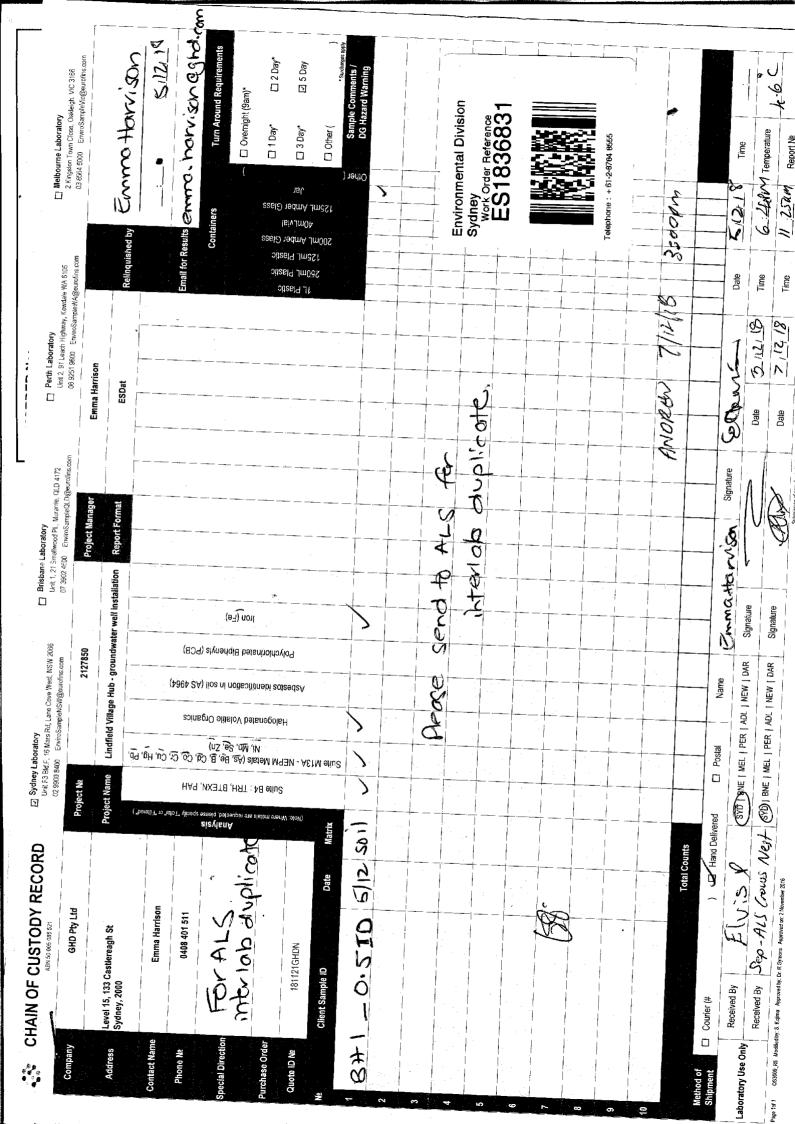
Qualifier Codes/Comments

Code Description

C01 Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other

Authorised By

Nibha Vaidya Gabriele Cordero Analytical Services Manager Senior Analyst-Metal (NSW)


Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | rigit shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rigit be liable for consequential damages including, but not limited to, isst profiles, damages for additions and is to production arising from this report. This document shall not be reproduced except in full and relates only to the instested. Unless indicated otherwise, the tests were performed on the samples as received.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES1836831				
Client Contact Address	E GHD PTY LTD EMMA HARRISON LEVEL 15, 133 CASTLEREAGH STREET SYDNEY NSW, AUSTRALIA 2000	Contact : Cu Address : 27	vironmental Division Sydney stomer Services ES 7-289 Woodpark Road Smithfield W Australia 2164		
E-mail Telephone Facsimile	: emma.harrison@ghd.com : :	Telephone : +6	: ALSEnviro.Sydney@ALSGlobal.com : +61-2-8784 8555 : +61-2-8784 8500		
Project Order number C-O-C number Site Sampler	: 2127850 : : : :		of 2 2018GHDSER0025 (EN/005/18) PM 2013 B3 & ALS QC Standard		
DatesDate Samples Received: 07-Dec-2018 11:25Client Requested Due: 14-Dec-2018Date: 14-Dec-2018		Issue Date Scheduled Reporting Date	: 08-Dec-2018 : 14-Dec-2018		
Delivery Deta Mode of Delivery No. of coolers/boxes Receipt Detail	: Carrier	Security Seal Temperature No. of samples received / ar	: Intact. : 7.1'C - Ice present nalysed : 1 / 1		

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

Matrix: SOIL

tasks.Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time componentMatrix:SOILLaboratory sample IDClient sampling date / time	SOIL - EA055-103	SOIL - EG005T (solids)	SOIL - EP074DEFG (solids)	SOIL - S-02	SOIL - S-07
	Moisture Content	Total Metals by ICP-AES	VOC - Fumigants, Hal Aliphatics, Hal Aromatics,	8 Metals (incl. Digestion)	TRH/BTEXN/PAH (SIM)
ES1836831-001 05-Dec-2018 00:00 BH1_0.5ID	✓	1	✓	✓	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE (Brisbane)		
- A4 - AU Tax Invoice (INV)	Email	ap-fss@ghd.com
ACCOUNTS PAYABLE (Hobart)		
- A4 - AU Tax Invoice (INV)	Email	ap-fss@ghd.com
EMMA HARRISON		
 *AU Certificate of Analysis - NATA (COA) 	Email	emma.harrison@ghd.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	emma.harrison@ghd.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	emma.harrison@ghd.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	emma.harrison@ghd.com
 Chain of Custody (CoC) (COC) 	Email	emma.harrison@ghd.com
- EDI Format - ENMRG (ENMRG)	Email	emma.harrison@ghd.com
- EDI Format - ESDAT (ESDAT)	Email	emma.harrison@ghd.com
 Electronic SRN for ESdat (ESRN_ESDAT) 	Email	emma.harrison@ghd.com
GHD LAB REPORTS		
 *AU Certificate of Analysis - NATA (COA) 	Email	ghdlabreports@ghd.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	ghdlabreports@ghd.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	ghdlabreports@ghd.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ghdlabreports@ghd.com
- EDI Format - ESDAT (ESDAT)	Email	ghdlabreports@ghd.com
- Electronic SRN for ESdat (ESRN_ESDAT)	Email	ghdlabreports@ghd.com

CERTIFICATE OF ANALYSIS

Work Order	ES1836831	Page	: 1 of 7	
Client	: GHD PTY LTD	Laboratory	: Environmental Division Sy	ydney
Contact	: EMMA HARRISON	Contact	: Customer Services ES	
Address	: LEVEL 15, 133 CASTLEREAGH STREET SYDNEY NSW, AUSTRALIA 2000	Address	: 277-289 Woodpark Road	Smithfield NSW Australia 2164
Telephone	· · · · · · · · · · · · · · · · · · ·	Telephone	: +61-2-8784 8555	
Project	: 2127850	Date Samples Received	: 07-Dec-2018 11:25	ANUTUR.
Order number	:	Date Analysis Commenced	: 10-Dec-2018	
C-O-C number	:	Issue Date	: 14-Dec-2018 17:55	
Sampler	:			Hac-MRA NATA
Site	:			
Quote number	: EN/005/18			Accreditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

Page	: 2 of 7
Work Order	: ES1836831
Client	: GHD PTY LTD
Project	2127850

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

 \emptyset = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.

Page	: 3 of 7
Work Order	: ES1836831
Client	: GHD PTY LTD
Project	: 2127850

Sub-Matrix: SOIL (Matrix: SOIL)				BH1_0.5ID	 	
	Client sampling date / time		05-Dec-2018 00:00	 	 	
Compound	CAS Number	LOR	Unit	ES1836831-001	 	
				Result	 	
EA055: Moisture Content (Dried @	105-110°C)					
Moisture Content		1.0	%	17.9	 	
EG005T: Total Metals by ICP-AES						
Beryllium	7440-41-7	1	mg/kg	<1	 	
Boron	7440-42-8	50	mg/kg	<50	 	
Cobalt	7440-48-4	2	mg/kg	<2	 	
Iron	7439-89-6	50	mg/kg	6480	 	
Manganese	7439-96-5	5	mg/kg	<5	 	
Selenium	7782-49-2	5	mg/kg	<5	 	
Arsenic	7440-38-2	5	mg/kg	7	 	
Cadmium	7440-43-9	1	mg/kg	<1	 	
Chromium	7440-47-3	2	mg/kg	10	 	
Copper	7440-50-8	5	mg/kg	18	 	
Lead	7439-92-1	5	mg/kg	13	 	
Nickel	7440-02-0	2	mg/kg	<2	 	
Zinc	7440-66-6	5	mg/kg	7	 	
EG035T: Total Recoverable Mercu	rv bv FIMS					
Mercury	7439-97-6	0.1	mg/kg	<0.1	 	
EP074D: Fumigants						
2.2-Dichloropropane	594-20-7	0.5	mg/kg	<0.5	 	
1.2-Dichloropropane	78-87-5	0.5	mg/kg	<0.5	 	
cis-1.3-Dichloropropylene	10061-01-5	0.5	mg/kg	<0.5	 	
trans-1.3-Dichloropropylene	10061-02-6	0.5	mg/kg	<0.5	 	
1.2-Dibromoethane (EDB)	106-93-4	0.5	mg/kg	<0.5	 	
EP074E: Halogenated Aliphatic Cor	mpounds					
Dichlorodifluoromethane	75-71-8	5	mg/kg	<5	 	
Chloromethane	74-87-3	5	mg/kg	<5	 	
Vinyl chloride	75-01-4	5	mg/kg	<5	 	
Bromomethane	74-83-9	5	mg/kg	<5	 	
Chloroethane	75-00-3	5	mg/kg	<5	 	
Trichlorofluoromethane	75-69-4	5	mg/kg	<5	 	
1.1-Dichloroethene	75-35-4	0.5	mg/kg	<0.5	 	
lodomethane	74-88-4	0.5	mg/kg	<0.5	 	
trans-1.2-Dichloroethene	156-60-5	0.5	mg/kg	<0.5	 	
1.1-Dichloroethane	75-34-3	0.5	mg/kg	<0.5	 	

Page	: 4 of 7
Work Order	ES1836831
Client	: GHD PTY LTD
Project	: 2127850

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH1_0.5ID	 	
(Cli	ent samplii	ng date / time	05-Dec-2018 00:00	 	
Compound	CAS Number	LOR	Unit	ES1836831-001	 	
				Result	 	
EP074E: Halogenated Aliphatic Comp	ounds - Continued					
cis-1.2-Dichloroethene	156-59-2	0.5	mg/kg	<0.5	 	
1.1.1-Trichloroethane	71-55-6	0.5	mg/kg	<0.5	 	
1.1-Dichloropropylene	563-58-6	0.5	mg/kg	<0.5	 	
Carbon Tetrachloride	56-23-5	0.5	mg/kg	<0.5	 	
1.2-Dichloroethane	107-06-2	0.5	mg/kg	<0.5	 	
Trichloroethene	79-01-6	0.5	mg/kg	<0.5	 	
Dibromomethane	74-95-3	0.5	mg/kg	<0.5	 	
1.1.2-Trichloroethane	79-00-5	0.5	mg/kg	<0.5	 	
1.3-Dichloropropane	142-28-9	0.5	mg/kg	<0.5	 	
Tetrachloroethene	127-18-4	0.5	mg/kg	<0.5	 	
1.1.1.2-Tetrachloroethane	630-20-6	0.5	mg/kg	<0.5	 	
trans-1.4-Dichloro-2-butene	110-57-6	0.5	mg/kg	<0.5	 	
cis-1.4-Dichloro-2-butene	1476-11-5	0.5	mg/kg	<0.5	 	
1.1.2.2-Tetrachloroethane	79-34-5	0.5	mg/kg	<0.5	 	
1.2.3-Trichloropropane	96-18-4	0.5	mg/kg	<0.5	 	
Pentachloroethane	76-01-7	0.5	mg/kg	<0.5	 	
1.2-Dibromo-3-chloropropane	96-12-8	0.5	mg/kg	<0.5	 	
Hexachlorobutadiene	87-68-3	0.5	mg/kg	<0.5	 	
EP074F: Halogenated Aromatic Comp	ounds					
Chlorobenzene	108-90-7	0.5	mg/kg	<0.5	 	
Bromobenzene	108-86-1	0.5	mg/kg	<0.5	 	
2-Chlorotoluene	95-49-8	0.5	mg/kg	<0.5	 	
4-Chlorotoluene	106-43-4	0.5	mg/kg	<0.5	 	
1.3-Dichlorobenzene	541-73-1	0.5	mg/kg	<0.5	 	
1.4-Dichlorobenzene	106-46-7	0.5	mg/kg	<0.5	 	
1.2-Dichlorobenzene	95-50-1	0.5	mg/kg	<0.5	 	
1.2.4-Trichlorobenzene	120-82-1	0.5	mg/kg	<0.5	 	
1.2.3-Trichlorobenzene	87-61-6	0.5	mg/kg	<0.5	 	
EP074G: Trihalomethanes						
Chloroform	67-66-3	0.5	mg/kg	<0.5	 	
Bromodichloromethane	75-27-4	0.5	mg/kg	<0.5	 	
Dibromochloromethane	124-48-1	0.5	mg/kg	<0.5	 	
Bromoform	75-25-2	0.5	mg/kg	<0.5	 	
EP075(SIM)B: Polynuclear Aromatic H	lydrocarbons					

Page	: 5 of 7
Work Order	ES1836831
Client	: GHD PTY LTD
Project	2127850

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH1_0.5ID	 	
	Cl	ient sampli	ng date / time	05-Dec-2018 00:00	 	
Compound	CAS Number	LOR	Unit	ES1836831-001	 	
				Result	 	
EP075(SIM)B: Polynuclear Aromatic	Hvdrocarbons - Cont	inued				
Naphthalene	91-20-3	0.5	mg/kg	<0.5	 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	 	
Fluorene	86-73-7	0.5	mg/kg	<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	 	
Anthracene	120-12-7	0.5	mg/kg	<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	 	
Pyrene	129-00-0	0.5	mg/kg	<0.5	 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	 	
Chrysene	218-01-9	0.5	mg/kg	<0.5	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	 	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	 	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	 	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	 	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	 	
^ Sum of polycyclic aromatic hydrocarb	ons	0.5	mg/kg	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	 	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	 	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	 	
EP080/071: Total Petroleum Hydroca	arbons					
C6 - C9 Fraction		10	mg/kg	<10	 	
C10 - C14 Fraction		50	mg/kg	<50	 	
C15 - C28 Fraction		100	mg/kg	<100	 	
C29 - C36 Fraction		100	mg/kg	<100	 	
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	 	
EP080/071: Total Recoverable Hydro	ocarbons - NEP <u>M 201</u>	3 Fractio	าร			
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	 	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	 	
(F1)		=0		50		
>C10 - C16 Fraction		50	mg/kg	<50	 	
>C16 - C34 Fraction		100	mg/kg	<100	 	
>C34 - C40 Fraction		100	mg/kg	<100	 	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	 	

Page	: 6 of 7
Work Order	: ES1836831
Client	: GHD PTY LTD
Project	2127850

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH1_0.5ID	 	
	Client sampling date / time			05-Dec-2018 00:00	 	
Compound	CAS Number	LOR	Unit	ES1836831-001	 	
				Result	 	
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	ns - Continued			
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	 	
(F2)						
EP080: BTEXN						
Benzene	71-43-2	0.2	mg/kg	<0.2	 	
Toluene	108-88-3	0.5	mg/kg	<0.5	 	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	 	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	 	
^ Sum of BTEX		0.2	mg/kg	<0.2	 	
^ Total Xylenes		0.5	mg/kg	<0.5	 	
Naphthalene	91-20-3	1	mg/kg	<1	 	
EP074S: VOC Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.5	%	86.9	 	
Toluene-D8	2037-26-5	0.5	%	95.6	 	
4-Bromofluorobenzene	460-00-4	0.5	%	95.0	 	
EP075(SIM)S: Phenolic Compound Su	rrogates					
Phenol-d6	13127-88-3	0.5	%	73.9	 	
2-Chlorophenol-D4	93951-73-6	0.5	%	78.4	 	
2.4.6-Tribromophenol	118-79-6	0.5	%	55.3	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	0.5	%	85.3	 	
Anthracene-d10	1719-06-8	0.5	%	84.0	 	
4-Terphenyl-d14	1718-51-0	0.5	%	82.0	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.2	%	89.1	 	
Toluene-D8	2037-26-5	0.2	%	88.3	 	
4-Bromofluorobenzene	460-00-4	0.2	%	90.5	 	

Page	: 7 of 7
Work Order	ES1836831
Client	: GHD PTY LTD
Project	2127850

Surrogate Control Limits

Out Matrix CON					
Sub-Matrix: SOIL		Recovery Limits (%)			
Compound	CAS Number	Low	High		
EP074S: VOC Surrogates					
1.2-Dichloroethane-D4	17060-07-0	64	130		
Toluene-D8	2037-26-5	66	136		
4-Bromofluorobenzene	460-00-4	60	122		
EP075(SIM)S: Phenolic Compound Surrogates					
Phenol-d6	13127-88-3	63	123		
2-Chlorophenol-D4	93951-73-6	66	122		
2.4.6-Tribromophenol	118-79-6	40	138		
EP075(SIM)T: PAH Surrogates					
2-Fluorobiphenyl	321-60-8	70	122		
Anthracene-d10	1719-06-8	66	128		
4-Terphenyl-d14	1718-51-0	65	129		
EP080S: TPH(V)/BTEX Surrogates					
1.2-Dichloroethane-D4	17060-07-0	73	133		
Toluene-D8	2037-26-5	74	132		
4-Bromofluorobenzene	460-00-4	72	130		

QUALITY CONTROL REPORT

Work Order	: ES1836831	Page	: 1 of 12	
Client		Laboratory	: Environmental Division S	ydney
Contact	: EMMA HARRISON	Contact	: Customer Services ES	
Address	ELEVEL 15, 133 CASTLEREAGH STREET SYDNEY NSW, AUSTRALIA 2000	Address	: 277-289 Woodpark Road	Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555	
Project	: 2127850	Date Samples Received	: 07-Dec-2018	
Order number	:	Date Analysis Commenced	: 10-Dec-2018	
C-O-C number	:	Issue Date	: 14-Dec-2018	
Sampler	:			Hac-WRA NATA
Site	:			
Quote number	: EN/005/18			Accreditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

Page	: 2 of 12
Work Order	: ES1836831
Client	: GHD PTY LTD
Project	: 2127850

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- # = Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	ntent (Dried @ 105-110	°C) (QC Lot: 2085887)							
ES1836822-001	Anonymous	EA055: Moisture Content		0.1	%	17.4	15.5	11.6	0% - 50%
EG005T: Total Meta	Is by ICP-AES (QC Lot	: 2093452)							
ES1836831-001	BH1_0.5ID	EG005T: Beryllium	7440-41-7	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	10	10	0.00	No Limit
		EG005T: Cobalt	7440-48-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	<2	<2	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	7	7	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	18	18	0.00	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	13	12	0.00	No Limit
		EG005T: Manganese	7439-96-5	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.00	No Limit
	EG005T: Zinc	7440-66-6	5	mg/kg	7	6	0.00	No Limit	
	EG005T: Boron	7440-42-8	50	mg/kg	<50	<50	0.00	No Limit	
		EG005T: Iron	7439-89-6	50	mg/kg	6480	6930	6.64	0% - 20%
ES1837191-033 Anonymous	EG005T: Beryllium	7440-41-7	1	mg/kg	<1	<1	0.00	No Limit	
		EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	7	8	0.00	No Limit
		EG005T: Cobalt	7440-48-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	2	3	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	6	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	18	20	5.79	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	43	43	0.00	No Limit
		EG005T: Manganese	7439-96-5	5	mg/kg	18	10	57.3	No Limit
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.00	No Limit

Page	: 3 of 12
Work Order	ES1836831
Client	: GHD PTY LTD
Project	: 2127850

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005T: Total Metal	Is by ICP-AES (QC Lot	:: 2093452) - continued							
ES1837191-033	Anonymous	EG005T: Zinc	7440-66-6	5	mg/kg	15	16	0.00	No Limit
		EG005T: Boron	7440-42-8	50	mg/kg	<50	<50	0.00	No Limit
		EG005T: Iron	7439-89-6	50	mg/kg	20700	22900	9.87	0% - 20%
EG035T: Total Reco	overable Mercury by Fl	MS (QC Lot: 2093453)							
ES1836831-001	BH1_0.5ID	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES1837191-033	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP074D: Fumigants	(QC Lot: 2083771)								
ES1836598-001	Anonymous	EP074: 2.2-Dichloropropane	594-20-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.2-Dichloropropane	78-87-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: cis-1.3-Dichloropropylene	10061-01-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: trans-1.3-Dichloropropylene	10061-02-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.2-Dibromoethane (EDB)	106-93-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
ES1836598-011	Anonymous	EP074: 2.2-Dichloropropane	594-20-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.2-Dichloropropane	78-87-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: cis-1.3-Dichloropropylene	10061-01-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: trans-1.3-Dichloropropylene	10061-02-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.2-Dibromoethane (EDB)	106-93-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
-P074F: Halogenate	ed Aliphatic Compound								
ES1836598-001	Anonymous	EP074: 1.1-Dichloroethene	75-35-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	, along mode	EP074: Iodomethane	74-88-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: trans-1.2-Dichloroethene	156-60-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.1-Dichloroethane	75-34-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: cis-1.2-Dichloroethene	156-59-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.1.1-Trichloroethane	71-55-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.1-Dichloropropylene	563-58-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: Carbon Tetrachloride	56-23-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.2-Dichloroethane	107-06-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: Trichloroethene	79-01-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: Dibromomethane	74-95-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.1.2-Trichloroethane	79-00-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.3-Dichloropropane	142-28-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: Tetrachloroethene	127-18-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.1.1.2-Tetrachloroethane	630-20-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: trans-1.4-Dichloro-2-butene	110-57-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: cis-1.4-Dichloro-2-butene	1476-11-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.1.2.2-Tetrachloroethane	79-34-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.2.2-Trichloropropane	96-18-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.2.3- Inchiolopiopane EP074: Pentachloroethane	76-01-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.2-Dibromo-3-chloropropane	96-12-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.2-Diblomo-3-chioropropane	87-68-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit

Page	: 4 of 12
Work Order	: ES1836831
Client	: GHD PTY LTD
Project	: 2127850

ub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	!	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
P074E: Halogenate	d Aliphatic Compound	ls (QC Lot: 2083771) - continued							
ES1836598-001	Anonymous	EP074: Dichlorodifluoromethane	75-71-8	5	mg/kg	<5	<5	0.00	No Limit
		EP074: Chloromethane	74-87-3	5	mg/kg	<5	<5	0.00	No Limit
		EP074: Vinyl chloride	75-01-4	5	mg/kg	<5	<5	0.00	No Limit
		EP074: Bromomethane	74-83-9	5	mg/kg	<5	<5	0.00	No Limit
		EP074: Chloroethane	75-00-3	5	mg/kg	<5	<5	0.00	No Limit
		EP074: Trichlorofluoromethane	75-69-4	5	mg/kg	<5	<5	0.00	No Limit
S1836598-011	Anonymous	EP074: 1.1-Dichloroethene	75-35-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: lodomethane	74-88-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: trans-1.2-Dichloroethene	156-60-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.1-Dichloroethane	75-34-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: cis-1.2-Dichloroethene	156-59-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.1.1-Trichloroethane	71-55-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.1-Dichloropropylene	563-58-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: Carbon Tetrachloride	56-23-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.2-Dichloroethane	107-06-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: Trichloroethene	79-01-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: Dibromomethane	74-95-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.1.2-Trichloroethane	79-00-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.3-Dichloropropane	142-28-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: Tetrachloroethene	127-18-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.1.1.2-Tetrachloroethane	630-20-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: trans-1.4-Dichloro-2-butene	110-57-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: cis-1.4-Dichloro-2-butene	1476-11-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.1.2.2-Tetrachloroethane	79-34-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.2.3-Trichloropropane	96-18-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: Pentachloroethane	76-01-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.2-Dibromo-3-chloropropane	96-12-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: Hexachlorobutadiene	87-68-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: Dichlorodifluoromethane	75-71-8	5	mg/kg	<5	<5	0.00	No Limit
		EP074: Chloromethane	74-87-3	5	mg/kg	<5	<5	0.00	No Limit
		EP074: Vinyl chloride	75-01-4	5	mg/kg	<5	<5	0.00	No Limit
		EP074: Bromomethane	74-83-9	5	mg/kg	<5	<5	0.00	No Limit
		EP074: Chloroethane	75-00-3	5	mg/kg	<5	<5	0.00	No Limit
		EP074: Trichlorofluoromethane	75-69-4	5	mg/kg	<5	<5	0.00	No Limit
P074F: Halogenate	d Aromatic Compound	ds (QC Lot: 2083771)							
S1836598-001	Anonymous	EP074: Chlorobenzene	108-90-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: Bromobenzene	108-86-1	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 2-Chlorotoluene	95-49-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 4-Chlorotoluene	106-43-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP074: 1.3-Dichlorobenzene	541-73-1	0.5	mg/kg	<0.5	<0.5	0.00	No Limit

Page	: 5 of 12
Work Order	ES1836831
Client	: GHD PTY LTD
Project	: 2127850

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%		
P074F: Halogenate	ed Aromatic Compound	ls (QC Lot: 2083771) - continued									
ES1836598-001	Anonymous	EP074: 1.4-Dichlorobenzene	106-46-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP074: 1.2-Dichlorobenzene	95-50-1	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP074: 1.2.4-Trichlorobenzene	120-82-1	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP074: 1.2.3-Trichlorobenzene	87-61-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
ES1836598-011	Anonymous	EP074: Chlorobenzene	108-90-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP074: Bromobenzene	108-86-1	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
	EP074: 2-Chlorotoluene	95-49-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP074: 4-Chlorotoluene	106-43-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP074: 1.3-Dichlorobenzene	541-73-1	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP074: 1.4-Dichlorobenzene	106-46-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP074: 1.2-Dichlorobenzene	95-50-1	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP074: 1.2.4-Trichlorobenzene	120-82-1	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
	EP074: 1.2.3-Trichlorobenzene	87-61-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
EP074G: Trihalome	thanes (QC Lot: 20837)	71)									
ES1836598-001	Anonymous	EP074: Chloroform	67-66-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
	EP074: Bromodichloromethane	75-27-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
	EP074: Dibromochloromethane	124-48-1	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
	EP074: Bromoform	75-25-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
ES1836598-011 Anonymous	EP074: Chloroform	67-66-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
	,	EP074: Bromodichloromethane	75-27-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP074: Dibromochloromethane	124-48-1	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP074: Bromoform	75-25-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
P075(SIM)B: Polyn	uclear Aromatic Hydro	carbons (QC Lot: 2083680)									
ES1836882-022	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
	, alonymous	EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
			83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Acenaphthene EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
			85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Phenanthrene EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Pyrene EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benz(a)antinacene EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Chrysene EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
			205-99-2	0.0		0.0	-0.0	0.00			
		EP075(SIM): Benzo(k)fluoranthene	205-82-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benzo(a)pyrene EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Indeno(1.2.3.cd)pyrene EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EF0/5(Silvi). Dibenz(a.ff)antinacene	55-70-3	0.0	ing/kg	<0.5	<0.5	0.00			

Page	: 6 of 12
Work Order	: ES1836831
Client	: GHD PTY LTD
Project	: 2127850

ub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
P075(SIM)B: Polyn	uclear Aromatic Hydro	ocarbons (QC Lot: 2083680) - continued							
ES1836882-022	Anonymous	EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		hydrocarbons				mg/kg <0.5 <0.5 0.00 mg/kg <0.5			
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg				No Limit
ES1836882-034	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg		<0.5	0.00	No Limit	
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
P080/071: Total Pe	troleum Hydrocarbons	GQC Lot: 2083681)							
S1836882-022	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
S1836882-034	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
P080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 2083772)							
ES1836598-011	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
P080/071: Total Re	coverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 2083681)							
S1836882-022	Anonymous	EP071: >C16 - C34 Fraction		100	ma/ka	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		100					No Limit
		EP071: >C10 - C16 Fraction		50					No Limit
S1836882-034	Anonymous	EP071: >C10 - C10 Flaction		100	mg/kg	<100	<100	0.00	No Limit
	, alonymous			100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		ns - NEPM 2013 Fractions (QC Lot: 2083772)		50	iiig/kg	-00	-00	0.00	

Page	: 7 of 12
Work Order	: ES1836831
Client	: GHD PTY LTD
Project	: 2127850

Sub-Matrix: SOIL						Laboratory D	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Red	coverable Hydrocarbons - NI	EPM 2013 Fractions (QC Lot: 2083772) - continued							
ES1836598-011	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
EP080: BTEXN (QC	Lot: 2083772)								
ES1836598-011	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL			Method Blank (MB)		Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR Unit		Result	Concentration	LCS	Low	High
EG005T: Total Metals by ICP-AES (QCLot: 209	93452)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	106	86	126
EG005T: Beryllium	7440-41-7	1	mg/kg	<1	5.63 mg/kg	106	90	113
EG005T: Boron	7440-42-8	50	mg/kg	<50				
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	91.2	83	113
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	88.5	76	128
EG005T: Cobalt	7440-48-4	2	mg/kg	<2	16 mg/kg	106	88	120
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	98.2	86	120
EG005T: Iron	7439-89-6	50	mg/kg	<50	8400 mg/kg	74.2	70	130
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	101	80	114
EG005T: Manganese	7439-96-5	5	mg/kg	<5	130 mg/kg	99.7	85	117
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	106	87	123
EG005T: Selenium	7782-49-2	5	mg/kg	<5	5.37 mg/kg	88.5	75	131
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	112	80	122
G035T: Total Recoverable Mercury by FIMS	(QCLot: 2093453)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	70.4	70	105
EP074D: Fumigants (QCLot: 2083771)								
EP074: 2.2-Dichloropropane	594-20-7	0.5	mg/kg	<0.5	1 mg/kg	95.3	60	126
EP074: 1.2-Dichloropropane	78-87-5	0.5	mg/kg	<0.5	1 mg/kg	97.0	68	124
EP074: cis-1.3-Dichloropropylene	10061-01-5	0.5	mg/kg	<0.5	1 mg/kg	96.4	51	119
EP074: trans-1.3-Dichloropropylene	10061-02-6	0.5	mg/kg	<0.5	1 mg/kg	95.7	52	114
EP074: 1.2-Dibromoethane (EDB)	106-93-4	0.5	mg/kg	<0.5	1 mg/kg	95.9	63	115
EP074E: Halogenated Aliphatic Compounds (QCI of: 2083771)							
EP074: Dichlorodifluoromethane	75-71-8	5	mg/kg	<5	10 mg/kg	61.2	30	148
EP074: Chloromethane	74-87-3	5	mg/kg	<5	10 mg/kg	77.5	41	141
EP074: Vinyl chloride	75-01-4	5	mg/kg	<5	10 mg/kg	110	43	147
EP074: Bromomethane	74-83-9	5	mg/kg	<5	10 mg/kg	76.1	47	141
EP074: Chloroethane	75-00-3	5	mg/kg	<5	10 mg/kg	87.1	49	143
EP074: Trichlorofluoromethane	75-69-4	5	mg/kg	<5	10 mg/kg	87.6	49	135
EP074: 1.1-Dichloroethene	75-35-4	0.5	mg/kg	<0.5	1 mg/kg	89.8	54	126
EP074: lodomethane	74-88-4	0.5	mg/kg	<0.5	1 mg/kg	61.6	43	129
EP074: trans-1.2-Dichloroethene	156-60-5	0.5	mg/kg	<0.5	1 mg/kg	92.6	64	120
EP074: 1.1-Dichloroethane	75-34-3	0.5	mg/kg	<0.5	1 mg/kg	95.7	67	125
EP074: cis-1.2-Dichloroethene	156-59-2	0.5	mg/kg	<0.5	1 mg/kg	96.8	69	121
EP074: 1.1.1-Trichloroethane	71-55-6	0.5	mg/kg	<0.5	1 mg/kg	96.6	65	117

Page	: 9 of 12
Work Order	ES1836831
Client	: GHD PTY LTD
Project	: 2127850

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP074E: Halogenated Aliphatic Compounds (QC	Lot: 2083771) - continued							
EP074: 1.1-Dichloropropylene	563-58-6	0.5	mg/kg	<0.5	1 mg/kg	96.4	65	123
EP074: Carbon Tetrachloride	56-23-5	0.5	mg/kg	<0.5	1 mg/kg	96.2	59	125
EP074: 1.2-Dichloroethane	107-06-2	0.5	mg/kg	<0.5	1 mg/kg	93.8	65	125
EP074: Trichloroethene	79-01-6	0.5	mg/kg	<0.5	1 mg/kg	97.6	70	118
EP074: Dibromomethane	74-95-3	0.5	mg/kg	<0.5	1 mg/kg	94.5	68	118
P074: 1.1.2-Trichloroethane	79-00-5	0.5	mg/kg	<0.5	1 mg/kg	96.1	64	126
EP074: 1.3-Dichloropropane	142-28-9	0.5	mg/kg	<0.5	1 mg/kg	99.8	68	122
P074: Tetrachloroethene	127-18-4	0.5	mg/kg	<0.5	1 mg/kg	96.7	67	143
EP074: 1.1.1.2-Tetrachloroethane	630-20-6	0.5	mg/kg	<0.5	1 mg/kg	94.2	62	122
P074: trans-1.4-Dichloro-2-butene	110-57-6	0.5	mg/kg	<0.5	1 mg/kg	91.1	54	128
P074: cis-1.4-Dichloro-2-butene	1476-11-5	0.5	mg/kg	<0.5	1 mg/kg	95.1	55	129
EP074: 1.1.2.2-Tetrachloroethane	79-34-5	0.5	mg/kg	<0.5	1 mg/kg	98.2	65	121
EP074: 1.2.3-Trichloropropane	96-18-4	0.5	mg/kg	<0.5	1 mg/kg	100	61	125
EP074: Pentachloroethane	76-01-7	0.5	mg/kg	<0.5	1 mg/kg	90.1	20	134
EP074: 1.2-Dibromo-3-chloropropane	96-12-8	0.5	mg/kg	<0.5	1 mg/kg	92.0	53	129
P074: Hexachlorobutadiene	87-68-3	0.5	mg/kg	<0.5	1 mg/kg	96.2	50	128
EP074F: Halogenated Aromatic Compounds (QC	Lot: 2083771)							
EP074: Chlorobenzene	108-90-7	0.5	mg/kg	<0.5	1 mg/kg	97.9	68	116
P074: Bromobenzene	108-86-1	0.5	mg/kg	<0.5	1 mg/kg	98.2	70	114
EP074: 2-Chlorotoluene	95-49-8	0.5	mg/kg	<0.5	1 mg/kg	96.0	68	122
P074: 4-Chlorotoluene	106-43-4	0.5	mg/kg	<0.5	1 mg/kg	96.5	67	123
P074: 1.3-Dichlorobenzene	541-73-1	0.5	mg/kg	<0.5	1 mg/kg	97.3	70	116
P074: 1.4-Dichlorobenzene	106-46-7	0.5	mg/kg	<0.5	1 mg/kg	94.9	67	117
EP074: 1.2-Dichlorobenzene	95-50-1	0.5	mg/kg	<0.5	1 mg/kg	96.6	70	114
P074: 1.2.4-Trichlorobenzene	120-82-1	0.5	mg/kg	<0.5	1 mg/kg	95.0	48	122
EP074: 1.2.3-Trichlorobenzene	87-61-6	0.5	mg/kg	<0.5	1 mg/kg	94.6	52	122
EP074G: Trihalomethanes (QCLot: 2083771)						1		
EP074: Chloroform	67-66-3	0.5	mg/kg	<0.5	1 mg/kg	95.0	66	124
P074: Bromodichloromethane	75-27-4	0.5	mg/kg	<0.5	1 mg/kg	94.8	61	121
EP074: Dibromochloromethane	124-48-1	0.5	mg/kg	<0.5	1 mg/kg	96.7	63	121
EP074: Bromoform	75-25-2	0.5	mg/kg	<0.5	1 mg/kg	87.4	60	126
EP075(SIM)B: Polynuclear Aromatic Hydrocarbor	ns (QCLot: 2083680)					I		1
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	114	77	125
P075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	120	72	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	104	73	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	119	72	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	116	75	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	98.8	77	127

Page	: 10 of 12
Work Order	: ES1836831
Client	: GHD PTY LTD
Project	: 2127850

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	Higl	
EP075(SIM)B: Polynuclear Aromatic Hydrocarb	ons (QCLot: 2083680) - cor	ntinued							
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	120	73	127	
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	117	74	128	
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	109	69	123	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	111	75	127	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	6 mg/kg	104	68	116	
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	114	74	126	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	122	70	126	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	116	61	121	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	113	62	118	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	118	63	121	
EP080/071: Total Petroleum Hydrocarbons (QC	Lot: 2083681)								
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	118	75	129	
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	110	77	131	
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	110	71	129	
EP080/071: Total Petroleum Hydrocarbons (QC	Lot: 2083772)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	85.7	68	128	
EP080/071: Total Recoverable Hydrocarbons - I	NEPM 2013 Fractions (QCL	ot: 2083681)							
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	102	77	125	
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	93.2	74	138	
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	108	63	131	
EP080/071: Total Recoverable Hydrocarbons - I	NEPM 2013 Fractions (QCL	ot: 2083772)							
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	86.3	68	128	
EP080: BTEXN (QCLot: 2083772)								1	
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	92.1	62	116	
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	86.1	67	121	
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	84.4	65	117	
EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	2 mg/kg	81.4	66	118	
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	87.1	68	120	
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	82.9	63	119	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

M	latrix Spike (MS) Repor	t
Spike	SpikeRecovery(%)	Recovery Limits (%)

Page	: 11 of 12
Work Order	: ES1836831
Client	: GHD PTY LTD
Project	: 2127850

ub-Matrix: SOIL				M	latrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery	Limits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G005T: Total Met	tals by ICP-AES (QCLot: 2093452)						
ES1836831-001	BH1 0.5ID	EG005T: Arsenic	7440-38-2	50 mg/kg	99.7	70	130
	_	EG005T: Cadmium	7440-43-9	50 mg/kg	94.8	70	130
		EG005T: Chromium	7440-47-3	50 mg/kg	89.1	70	130
		EG005T: Copper	7440-50-8	250 mg/kg	95.3	70	130
		EG005T: Lead	7439-92-1	250 mg/kg	97.0	70	130
		EG005T: Nickel	7440-02-0	50 mg/kg	98.5	70	130
		EG005T: Zinc	7440-66-6	250 mg/kg	114	70	130
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 209345	3)					
ES1836831-001	BH1 0.5ID	EG035T: Mercury	7439-97-6	5 mg/kg	80.2	70	130
	ated Aliphatic Compounds (QCLot: 2083771)						
	• • • •		75.05.4	0.5 mm///m	444	70	400
ES1836598-011	Anonymous	EP074: 1.1-Dichloroethene	75-35-4 79-01-6	2.5 mg/kg	114	70 70	130 130
		EP074: Trichloroethene	79-01-6	2.5 mg/kg	107	70	130
EP074F: Halogena	ted Aromatic Compounds (QCLot: 2083771)						
ES1836598-011	Anonymous	EP074: Chlorobenzene	108-90-7	2.5 mg/kg	107	70	130
EP075(SIM)B: Poly	ynuclear Aromatic Hydrocarbons (QCLot: 20	983680)					
ES1836882-022	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	95.9	70	130
	,	EP075(SIM): Pyrene	129-00-0	10 mg/kg	114	70	130
-P080/071: Total F	Petroleum Hydrocarbons (QCLot: 2083681)						
ES1836882-022	Anonymous	EB071: C10 C14 Erection		523 mg/kg	112	73	137
L31030002-022	Anonymous	EP071: C10 - C14 Fraction EP071: C15 - C28 Fraction		2319 mg/kg	131	53	137
		EP071: C13 - C28 Flaction EP071: C29 - C36 Fraction		1714 mg/kg	79.3	52	131
		EF071. 029 - 030 Fraction		in it inging	10.0	52	102
	Petroleum Hydrocarbons (QCLot: 2083772)						
ES1836598-011	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	88.5	70	130
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Frac	ctions (QCLot: 2083681)					
ES1836882-022	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	127	73	137
		EP071: >C16 - C34 Fraction		3223 mg/kg	105	53	131
		EP071: >C34 - C40 Fraction		1058 mg/kg	99.0	52	132
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Frac	ctions (QCLot: 2083772)					
ES1836598-011	Anonymous	EP080: C6 - C10 Fraction	C6 C10	37.5 mg/kg	90.9	70	130
EP080: BTEXN (Q	,						
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		74.40.0	0.5 mm///	07.0	70	400
ES1836598-011	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	87.8	70	130
		EP080: Toluene	108-88-3	2.5 mg/kg	86.9	70	130 130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	89.0	70	
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	85.3	70	130
			106-42-3	2.E.maller	00.6	70	100
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	90.6	70	130

Page Work Order Client Project	2 12 of 12 2 ES1836831 2 GHD PTY LTD 2 2127850						(ALS)
Sub-Matrix: SOIL				Ma	atrix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Recovery I	_imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080: BTEXN (Q	CLot: 2083772) - continued						
ES1836598-011	Anonymous	EP080: Naphthalene	91-20-3	2.5 mg/kg	90.2	70	130

QA/QC Compliance Assessment to assist with Quality Review					
Work Order	: ES1836831	Page	: 1 of 5		
Client		Laboratory	: Environmental Division Sydney		
Contact	: EMMA HARRISON	Telephone	: +61-2-8784 8555		
Project	: 2127850	Date Samples Received	: 07-Dec-2018		
Site	:	Issue Date	: 14-Dec-2018		
Sampler	:	No. of samples received	: 1		
Order number	:	No. of samples analysed	:1		

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page	: 2 of 5
Work Order	: ES1836831
Client	: GHD PTY LTD
Project	2127850

Outliers : Frequency of Quality Control Samples

N/	atr	iv•	SO	

Matrix: SOIL

Quality Control Sample Type	Co	unt	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
Moisture Content	1	15	6.67	10.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: \mathbf{x} = Holding time breach ; \mathbf{y} = Within holding time.

				Evaluation	Holding time	breach, • = with	n noiding tin
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluatio
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055) BH1_0.5ID	05-Dec-2018				10-Dec-2018	19-Dec-2018	~
EG005T: Total Metals by ICP-AES							
oil Glass Jar - Unpreserved (EG005T) BH1_0.5ID	05-Dec-2018	13-Dec-2018	03-Jun-2019	1	13-Dec-2018	03-Jun-2019	1
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T) BH1_0.5ID	05-Dec-2018	13-Dec-2018	02-Jan-2019	1	13-Dec-2018	02-Jan-2019	1
EP074D: Fumigants							
oil Glass Jar - Unpreserved (EP074) BH1_0.5ID	05-Dec-2018	10-Dec-2018	12-Dec-2018	~	10-Dec-2018	12-Dec-2018	~
EP074E: Halogenated Aliphatic Compounds							
Soil Glass Jar - Unpreserved (EP074) BH1_0.5ID	05-Dec-2018	10-Dec-2018	12-Dec-2018	1	10-Dec-2018	12-Dec-2018	~
EP074F: Halogenated Aromatic Compounds							
oil Glass Jar - Unpreserved (EP074) BH1_0.5ID	05-Dec-2018	10-Dec-2018	12-Dec-2018	1	10-Dec-2018	12-Dec-2018	~
EP074G: Trihalomethanes							
oil Glass Jar - Unpreserved (EP074) BH1_0.5ID	05-Dec-2018	10-Dec-2018	12-Dec-2018	1	10-Dec-2018	12-Dec-2018	~
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM)) BH1_0.5ID	05-Dec-2018	12-Dec-2018	19-Dec-2018	1	13-Dec-2018	21-Jan-2019	~

Page	: 3 of 5
Work Order	: ES1836831
Client	: GHD PTY LTD
Project	2127850

Matrix: SOIL				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP080) BH1_0.5ID	05-Dec-2018	10-Dec-2018	19-Dec-2018	1	10-Dec-2018	19-Dec-2018	-
Soil Glass Jar - Unpreserved (EP071) BH1_0.5ID	05-Dec-2018	12-Dec-2018	19-Dec-2018	1	13-Dec-2018	21-Jan-2019	~
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP080) BH1_0.5ID	05-Dec-2018	10-Dec-2018	19-Dec-2018	~	10-Dec-2018	19-Dec-2018	-
Soil Glass Jar - Unpreserved (EP071) BH1_0.5ID	05-Dec-2018	12-Dec-2018	19-Dec-2018	4	13-Dec-2018	21-Jan-2019	~
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080) BH1_0.5ID	05-Dec-2018	10-Dec-2018	19-Dec-2018	1	10-Dec-2018	19-Dec-2018	✓

Page	: 4 of 5
Work Order	: ES1836831
Client	: GHD PTY LTD
Project	2127850

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	1	15	6.67	10.00	×	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	18	5.56	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	18	5.56	5.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	10	10.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page	: 5 of 5
Work Order	ES1836831
Client	: GHD PTY LTD
Project	2127850

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM amended 2013.
Volatile Organic Compounds	EP074	SOIL	In house: Referenced to USEPA SW 846 - 8260B Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 501)
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM amended 2013.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

	Enurormancal	CHAIN OF CUSTODY ALS Laboratory	DADELAND Phr. 08 83305 DBR(SBAN 7 2243 CBL,40577 Phr. 07 7471 Phr. 07 7471	CADELAIDE Z1 Burna Road Pooraka SA 5095 Phr. 08 3539 1930 E: addate@isbylobist.com CBRISBANE 32. Shand Street Statford QLD 4053 Phr. 07 2323 7222 E: samples britshane@asglobat.com CQL4.052TONE & Callemondah Drive Crition QLD 4680 Phr. 07 7471 560 E: gløtshan@asglobal.com	ka SA 5095 lobel.com ord CLD 4053 ne@sisjobal.com 've Ciniton QLD 4680 gjobal.com	DMACKAY 73 Har Ph: 07 4944 0177 1 DMELBOURNE 2 Ph: 03 8549 9600 DMUDGEE 27 Syr Ph: 02 6372 6735 1	DMACKAY 73 Harbour Road Mackey CLD 4740 Ph. 07 4944 0177 E: mackey@aksjobal com CIMELECURNE 2-4 Westelf Road Springvale VIC 3171 Ph. 10 3945 9300 E: sam Pk-maleMugee NSW2850 Phr 02 6372 6735 E: mudgreh mal@aleglobal.com	LD 4740 Lcom ngvale VIC 3171 e@alsglobal.com ySW 2850 global.com		45 TLE 5 Rose Gur 68 9433 E: sample: 2A 4/13 Geary Placi 23 2063 E: mowra@ H 10 Hod Way Malt 209 7655 E: sampl	DNEWCASTLE 5 Rose Gurn Road Warabrook NSW 2304 Ph. 02 4968 9433 E. samples.newcastle@alsglobal.com CMOVRA.413 Geary Place Noth Nowra NSW 2541 Ph. 024423 2505 E. new a@alsglobal.com DFERTH 10 Hoo Way Malaga VA 6090 Ph. 08 8209 7665 E: samples.perth@alsglobal.com	■SYDNEY 277-289 Woodpark Road Smithfield NSW 2164 ■N: 28 754 555 Es: sensing sydneygalgobat.com □TOWNSYLLE 14:15 Deems court Bohla CLD 4318 Pt: 07 4798 0600 E: townswile annommata@sistlobat.com □WOLLONOCNG 99 Kenny Street Wollongong NSW 2500 Pt: 02 4225 3125 E: portkemble@aisglobat.com	d NSW 2164 al.com D 4315 elsglobal.com g NSW 2500 M
CLIENT: G	GHD Pty Ltd	hiease nev .		TURNAROUND		Standard TAT (List due date):	List due date):			•	FOR LABOR		
OFFICE: S	Sydney			(Standard TAT may be longer for some tests e.g Ultra Trace	y be longer for 🛛	Non Standard or urgent TAT (List due date):	r urgent TAT (Li	st due date):			Custody Seal In	建合	NA NA
PROJECT: 21-27850	1-27850			ALS QUOTE NO.:		EN/005/18				COC SEQUENCE NUMBER (Circle)	•	celpt?, Yes	No
ORDER NUMBER:	ABER:							coc:	⊐ Ĵ	3		Random Sample Temperature on Receipt	- 法法公
PROJECT N	PROJECT MANAGER: Emma Harrison	arrison	CONTACT F	CONTACT PH: 02 9239 7910 / 0408 401 511	/ 0408 401 511			OF:	5	4	5 6 7 Other comment		
SAMPLER:	SAMPLER: Terry Nham		SAMPLER N	SAMPLER MOBILE: 0403 251 883		RELINQUISHED BY:	[RECEI	IVER BY:	NG	RELINQUISHED BY:		a E
COC emaile	COC emailed to ALS? (YES / NO)	(ON	EDD FORM	EDD FORMAT (or default):	Te	Terry Nham (GHD)		5	م کر	 > ~_		Sub-dax	Anest
Email Repo	Email Reports to: emma.harrison@ghd.com	n@ghd.com tern	terry.nham@ghd.com		DA	DATE/TIME	0	DATE		\tilde{C}	DATE/TIME:	DATE/TIME:	1127
Email Invoic	Email Invoice to (will default to PM if no other addresses are listed):	A if no other addresse	s are listed):			トニシ	2	×	4				
COMMENTS	COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:	G/STORAGE OR DIS	sPOSAL:			**				Xar	All 17/12/18	1500 43	ct-5°C
ALS		SAMPLE DETALS MATRIX: SOLID (S) WATER (M)	STALLS SJWATER (M)		CONTRAINER INFORM	JEORMATION		A	ANALYS! /here Metals an	S REQUIRED in e required, speci	/ cluding SUITES (NB. Suite Codes fy Total (unfiltered bottle required)	ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required).	-
LAB ID	SAMPLE ID	E D	DATE / TIME	ХІЯТАМ	TYPE & PRESERVATIVE (refer to codes below)	CONTAINERS	HAT \ PAE \ PAH \ Metal (W-26)	ອຂອນຮຽນຮັ	цол	НС	Boo		· · · · · · · · · · · · · · · · · · ·
-	acor	2	81/21/A	Uth		8	т Х	×	• \	$\mathbf{\dot{\mathbf{x}}}$			
		Ĩ						ł	Division	sion		- FS1837981	
							<u>ш</u> м	Environme Svdney	since -	g		WO # Assigned at	
							• . 	ы К С С С С С С С С С С С С С С С С С С	ES1837981	981		ALS Crows Nest	
							1						
						TOTAL	. e ¹¹	Telephone :	Telephone: + 61-2-8784 8555	1655 -			
1	Preserved; VB = Unpres	served Plastic; N = Nitri NA Vial Sodium Bisulphat	c Preserved Plastic; ORC = te Preserved; VS = VOA Via	Nitric Preserved OF I Suffuric Preserved;	SC; SH = Sodium Hydro AV = Airfreight Unprese 2 C det et et et et et et	xide/Cd Preserved rved Vial SG = St	S = Sodiu Ifuric Preserv⇔u	Amber Glass;	יישיי, אט H = HCl preser	= Amber Glass L ved Plastic; HS	inpreserved; AP - Airfreight Unpres = HCI preserved Speciation bottle;	φer Codes: P = Unpreserved Plastic: N = Minic Preserved ORC; SH = Sodium Hydroxide/Cd Preserved. S = Sodium φer Codes: P = Unpreserved Plastic: N = Minic Preserved ORC = Minic Preserved ORC; SH = Sodium Hydroxide/Cd Preserved. S = Sodium Hydroxide/Cd Preserved (Second Plastic) = Preserved Plastic) = Preserved Plastic; F = Formaldenyde Preserved Class; Preserved; VB = VOX via Sodium Bisulphate Preserved; NP = Minic Preserved; NP = Nitro Preserved; NP = Nitro Preserved Class; Preserved; VB = VOX via Sodium Bisulphate Preserved; NP = Nitro Preserved; NP = Intervenced Bisulphate Preserved Class; Preserved; VB = VOX via Sodium Bisulphate Preserved; NP = Intervenced Bisulphate Preserved Class; Preserved; VB = VOX via Sodium Bisulphate Preserved; NP = Intervenced Bisulphate Preserved Class; Preserved; VB = VOX via Sodium Bisulphate Preserved; NP = Nitro Preserved; NP = Intervenced Bisulphate Preserved; NP = Nitro Preserved;	ן אלפ Preserved Glass;

Ĺ

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES1837981			
Client Contact Address	E GHD PTY LTD E EMMA HARRISON E LEVEL 15, 133 CASTLEREAGH STREET SYDNEY NSW, AUSTRALIA 2000	Laboratory Contact Address	: Customer : 277-289 V	ental Division Sydney Services ES Voodpark Road Smithfield tralia 2164
E-mail Telephone Facsimile	: emma.harrison@ghd.com : :	E-mail Telephone Facsimile	: ALSEnviro : +61-2-878 : +61-2-878	
Project Order number C-O-C number Site Sampler	2127850 : : : : TERRY NHAM	Page Quote number QC Level		HDSER0025 (EN/005/18) 13 B3 & ALS QC Standard
Dates Date Samples Rece Client Requested D Date		Issue Date Scheduled Reporting	Date	: 19-Dec-2018 • 24-Dec-2018
Delivery Deta Mode of Delivery No. of coolers/boxes Receipt Detail	: Undefined	Security Seal Temperature No. of samples receiv	ved / analysed	 Not Available 4.3 - Ice Bricks present 1 / 1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

Matrix: WATER

as the determina tasks, that are inclu If no sampling default 00:00 on t	may contain ad ation of moisture uded in the package. time is provided, the date of samplin sampling date wi displayed in bra <i>Client sampling</i> <i>date / time</i>	content and preparation the sampling time will g. If no sampling date II be assumed by the	WATER - EG020F Dissolved Metals by ICP/MS	WATER - EP066-PCB-WA Polychlorinated Biphenyls (PCB)	WATER - EP074DEFG VOC - Fumigants, Hal Aliphatics, Hal Aromatics,
ES1837981-001	14-Dec-2018 00:00	QC02	 ✓ 	 ✓ 	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE (Hobart)

ACCOUNTS PATABLE (Hobart)		
- A4 - AU Tax Invoice (INV)	Email	ap-fss@ghd.com
EMMA HARRISON		
 *AU Certificate of Analysis - NATA (COA) 	Email	emma.harrison@ghd.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	emma.harrison@ghd.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	emma.harrison@ghd.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	emma.harrison@ghd.com
- Chain of Custody (CoC) (COC)	Email	emma.harrison@ghd.com
- EDI Format - ENMRG (ENMRG)	Email	emma.harrison@ghd.com
- EDI Format - ESDAT (ESDAT)	Email	emma.harrison@ghd.com
 Electronic SRN for ESdat (ESRN_ESDAT) 	Email	emma.harrison@ghd.com
GHD LAB REPORTS		
 *AU Certificate of Analysis - NATA (COA) 	Email	ghdlabreports@ghd.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	ghdlabreports@ghd.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	ghdlabreports@ghd.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ghdlabreports@ghd.com
 EDI Format - ESDAT (ESDAT) 	Email	ghdlabreports@ghd.com
 Electronic SRN for ESdat (ESRN_ESDAT) 	Email	ghdlabreports@ghd.com
TERRY NHAM		
 *AU Certificate of Analysis - NATA (COA) 	Email	terry.nham@ghd.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	terry.nham@ghd.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	terry.nham@ghd.com
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	terry.nham@ghd.com
- Chain of Custody (CoC) (COC)	Email	terry.nham@ghd.com
- EDI Format - ENMRG (ENMRG)	Email	terry.nham@ghd.com
- EDI Format - ESDAT (ESDAT)	Email	terry.nham@ghd.com
 Electronic SRN for ESdat (ESRN_ESDAT) 	Email	terry.nham@ghd.com

VATER - W-26 FRH/BTEXN/PAH/8 Metals

CERTIFICATE OF ANALYSIS

Work Order	ES1837981	Page	: 1 of 7	
Client	: GHD PTY LTD	Laboratory	: Environmental Division Sy	dney
Contact	: EMMA HARRISON	Contact	: Customer Services ES	-
Address	: LEVEL 15, 133 CASTLEREAGH STREET SYDNEY NSW, AUSTRALIA 2000	Address	: 277-289 Woodpark Road S	Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555	
Project	: 2127850	Date Samples Received	: 17-Dec-2018 11:57	ANNULL.
Order number	:	Date Analysis Commenced	: 19-Dec-2018	
C-O-C number	:	Issue Date	: 24-Dec-2018 16:48	
Sampler	: TERRY NHAM			HAC-MRA NATA
Site	:			
Quote number	: EN/005/18			Accreditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Alex Rossi	Organic Chemist	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

Page	: 2 of 7
Work Order	: ES1837981
Client	: GHD PTY LTD
Project	: 2127850

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.

Page	: 3 of 7
Work Order	ES1837981
Client	: GHD PTY LTD
Project	2127850

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	QC02				
	Cl	ient sampli	ng date / time	14-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	ES1837981-001				
				Result				
EG020F: Dissolved Metals by ICP-MS								
Arsenic	7440-38-2	0.001	mg/L	<0.001				
Cadmium	7440-43-9	0.0001	mg/L	<0.0001				
Chromium	7440-47-3	0.001	mg/L	<0.001				
Copper	7440-50-8	0.001	mg/L	0.062				
Lead	7439-92-1	0.001	mg/L	0.004				
Manganese	7439-96-5	0.001	mg/L	3.40				
Nickel	7440-02-0	0.001	mg/L	0.028				
Zinc	7440-66-6	0.005	mg/L	0.127				
Iron	7439-89-6	0.05	mg/L	2.85				
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001				
EP066: Polychlorinated Biphenyls (PCB)								
^ Total Polychlorinated biphenyls		1	µg/L	<1				
EP074D: Fumigants								
2.2-Dichloropropane	594-20-7	5	µg/L	<5				
1.2-Dichloropropane	78-87-5	5	μg/L	<5				
cis-1.3-Dichloropropylene	10061-01-5	5	μg/L	<5				
trans-1.3-Dichloropropylene	10061-02-6	5	μg/L	<5				
1.2-Dibromoethane (EDB)	106-93-4	5	μg/L	<5				
EP074E: Halogenated Aliphatic Comp								
Dichlorodifluoromethane	75-71-8	50	μg/L	<50				
Chloromethane	74-87-3	50	μg/L	<50				
Vinyl chloride	75-01-4	50	μg/L	<50				
Bromomethane	74-83-9	50	μg/L	<50				
Chloroethane	75-00-3	50	μg/L	<50				
Trichlorofluoromethane	75-69-4	50	μg/L	<50				
1.1-Dichloroethene	75-35-4	5	μg/L	<5				
lodomethane	74-88-4	5	μg/L	<5				
trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5				
1.1-Dichloroethane	75-34-3	5	µg/L	<5				
cis-1.2-Dichloroethene	156-59-2	5	µg/L	<5				
1.1.1-Trichloroethane	71-55-6	5	µg/L	<5				
1.1-Dichloropropylene	563-58-6	5	µg/L	<5				
Carbon Tetrachloride	56-23-5	5	μg/L	<5				

Page	: 4 of 7
Work Order	ES1837981
Client	: GHD PTY LTD
Project	2127850

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	QC02	 	
	Cli	Client sampling date / time		14-Dec-2018 00:00	 	
Compound	CAS Number	LOR	Unit	ES1837981-001	 	
				Result	 	
EP074E: Halogenated Aliphatic Com	pounds - Continued					
1.2-Dichloroethane	107-06-2	5	µg/L	<5	 	
Trichloroethene	79-01-6	5	µg/L	<5	 	
Dibromomethane	74-95-3	5	µg/L	<5	 	
1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	 	
1.3-Dichloropropane	142-28-9	5	µg/L	<5	 	
Tetrachloroethene	127-18-4	5	µg/L	<5	 	
1.1.1.2-Tetrachloroethane	630-20-6	5	µg/L	<5	 	
trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	 	
cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	 	
1.1.2.2-Tetrachloroethane	79-34-5	5	µg/L	<5	 	
1.2.3-Trichloropropane	96-18-4	5	µg/L	<5	 	
Pentachloroethane	76-01-7	5	µg/L	<5	 	
1.2-Dibromo-3-chloropropane	96-12-8	5	µg/L	<5	 	
Hexachlorobutadiene	87-68-3	5	µg/L	<5	 	
EP074F: Halogenated Aromatic Com	pounds					
Chlorobenzene	108-90-7	5	µg/L	<5	 	
Bromobenzene	108-86-1	5	µg/L	<5	 	
2-Chlorotoluene	95-49-8	5	µg/L	<5	 	
4-Chlorotoluene	106-43-4	5	µg/L	<5	 	
1.3-Dichlorobenzene	541-73-1	5	µg/L	<5	 	
1.4-Dichlorobenzene	106-46-7	5	µg/L	<5	 	
1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	 	
1.2.4-Trichlorobenzene	120-82-1	5	µg/L	<5	 	
1.2.3-Trichlorobenzene	87-61-6	5	µg/L	<5	 	
EP074G: Trihalomethanes						
Chloroform	67-66-3	5	µg/L	<5	 	
Bromodichloromethane	75-27-4	5	μg/L	<5	 	
Dibromochloromethane	124-48-1	5	µg/L	<5	 	
Bromoform	75-25-2	5	µg/L	<5	 	
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons					
Naphthalene	91-20-3	1.0	µg/L	<1.0	 	
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	 	
Acenaphthene	83-32-9	1.0	µg/L	<1.0	 	
Fluorene	86-73-7	1.0	µg/L	<1.0	 	

Page	5 of 7
Work Order	ES1837981
Client	: GHD PTY LTD
Project	2127850

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			QC02					
	Client sampling date / time			14-Dec-2018 00:00					
Compound	CAS Number	LOR	Unit	ES1837981-001					
				Result					
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons - Continued									
Phenanthrene	85-01-8	1.0	µg/L	<1.0					
Anthracene	120-12-7	1.0	µg/L	<1.0					
Fluoranthene	206-44-0	1.0	µg/L	<1.0					
Pyrene	129-00-0	1.0	µg/L	<1.0					
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0					
Chrysene	218-01-9	1.0	µg/L	<1.0					
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0					
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0					
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5					
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0					
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0					
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0					
^ Sum of polycyclic aromatic hydrocarbon	IS	0.5	µg/L	<0.5					
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5					
EP080/071: Total Petroleum Hydrocart	bons								
C6 - C9 Fraction		20	µg/L	<20					
C10 - C14 Fraction		50	µg/L	<50					
C15 - C28 Fraction		100	µg/L	<100					
C29 - C36 Fraction		50	µg/L	<50					
[^] C10 - C36 Fraction (sum)		50	µg/L	<50					
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fraction	ıs						
C6 - C10 Fraction	C6_C10	20	µg/L	<20					
[^] C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	20	µg/L	<20					
>C10 - C16 Fraction		100	µg/L	<100					
>C16 - C34 Fraction		100	µg/L	<100					
>C34 - C40 Fraction		100	µg/L	<100					
^ >C10 - C40 Fraction (sum)		100	µg/L	<100					
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L	<100					
(F2)									
EP080: BTEXN									
Benzene	71-43-2	1	µg/L	<1					
Toluene	108-88-3	2	µg/L	<2					
Ethylbenzene	100-41-4	2	µg/L	<2					
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2					

Page	: 6 of 7
Work Order	ES1837981
Client	: GHD PTY LTD
Project	2127850

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	QC02	 	
	Cli	ent sampli	ing date / time	14-Dec-2018 00:00	 	
Compound	CAS Number	LOR	Unit	ES1837981-001	 	
				Result	 	
EP080: BTEXN - Continued						
ortho-Xylene	95-47-6	2	µg/L	<2	 	
^ Total Xylenes		2	µg/L	<2	 	
^ Sum of BTEX		1	µg/L	<1	 	
Naphthalene	91-20-3	5	µg/L	<5	 	
EP066S: PCB Surrogate						
Decachlorobiphenyl	2051-24-3	1	%	112	 	
EP074S: VOC Surrogates						
1.2-Dichloroethane-D4	17060-07-0	5	%	100	 	
Toluene-D8	2037-26-5	5	%	96.3	 	
4-Bromofluorobenzene	460-00-4	5	%	94.4	 	
EP075(SIM)S: Phenolic Compound Surr	ogates					
Phenol-d6	13127-88-3	1.0	%	21.8	 	
2-Chlorophenol-D4	93951-73-6	1.0	%	50.4	 	
2.4.6-Tribromophenol	118-79-6	1.0	%	43.4	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	1.0	%	75.4	 	
Anthracene-d10	1719-06-8	1.0	%	85.1	 	
4-Terphenyl-d14	1718-51-0	1.0	%	89.6	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	2	%	100	 	
Toluene-D8	2037-26-5	2	%	98.4	 	
4-Bromofluorobenzene	460-00-4	2	%	94.9	 	

Page	: 7 of 7
Work Order	: ES1837981
Client	: GHD PTY LTD
Project	2127850

Surrogate Control Limits

Sub-Matrix: WATER		Recover	y Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	29	129
EP074S: VOC Surrogates			
1.2-Dichloroethane-D4	17060-07-0	78	133
Toluene-D8	2037-26-5	79	129
4-Bromofluorobenzene	460-00-4	81	124
EP075(SIM)S: Phenolic Compound Surroga	ates		
Phenol-d6	13127-88-3	10	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
Anthracene-d10	1719-06-8	27	113
4-Terphenyl-d14	1718-51-0	32	112
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	71	137
Toluene-D8	2037-26-5	79	131
4-Bromofluorobenzene	460-00-4	70	128

QUALITY CONTROL REPORT

Work Order	: ES1837981	Page	: 1 of 9	
Client		Laboratory	: Environmental Division S	Sydney
Contact	: EMMA HARRISON	Contact	: Customer Services ES	
Address	: LEVEL 15, 133 CASTLEREAGH STREET SYDNEY NSW, AUSTRALIA 2000	Address	: 277-289 Woodpark Road	d Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555	
Project	: 2127850	Date Samples Received	: 17-Dec-2018	
Order number	:	Date Analysis Commenced	: 19-Dec-2018	
C-O-C number	:	Issue Date	: 24-Dec-2018	
Sampler	: TERRY NHAM			HAC-MRA NATA
Site	:			
Quote number	: EN/005/18			Accreditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Alex Rossi	Organic Chemist	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

Page	: 2 of 9
Work Order	ES1837981
Client	: GHD PTY LTD
Project	: 2127850

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- # = Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER		Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
G020F: Dissolved	Metals by ICP-MS (QC	Lot: 2103995)							
ES1838061-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.002	0.002	0.00	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.002	0.002	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.013	0.013	0.00	0% - 50%
	EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.021	0.022	5.96	0% - 20%	
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.008	0.008	0.00	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.57	0.58	0.00	0% - 50%
W1805247-004	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.046	0.047	0.00	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.002	0.001	0.00	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.00	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.21	0.23	6.79	No Limit
G035F: Dissolved	Mercury by FIMS (QC L	_ot: 2103996)					·		
S1837973-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
P074D: Fumigants	(QC Lot: 2103881)								
S1837858-001	Anonymous	EP074: 2.2-Dichloropropane	594-20-7	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.2-Dichloropropane	78-87-5	5	µg/L	<5	<5	0.00	No Limit
		EP074: cis-1.3-Dichloropropylene	10061-01-5	5	µg/L	<5	<5	0.00	No Limit

Page	: 3 of 9
Work Order	: ES1837981
Client	: GHD PTY LTD
Project	: 2127850

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EP074D: Fumigants	(QC Lot: 2103881) - c	continued								
ES1837858-001	Anonymous	EP074: trans-1.3-Dichloropropylene	10061-02-6	5	μg/L	<5	<5	0.00	No Limit	
		EP074: 1.2-Dibromoethane (EDB)	106-93-4	5	µg/L	<5	<5	0.00	No Limit	
ES1837858-011	Anonymous	EP074: 2.2-Dichloropropane	594-20-7	5	µg/L	<5	<5	0.00	No Limit	
		EP074: 1.2-Dichloropropane	78-87-5	5	µg/L	<5	<5	0.00	No Limit	
		EP074: cis-1.3-Dichloropropylene	10061-01-5	5	µg/L	<5	<5	0.00	No Limit	
		EP074: trans-1.3-Dichloropropylene	10061-02-6	5	µg/L	<5	<5	0.00	No Limit	
		EP074: 1.2-Dibromoethane (EDB)	106-93-4	5	µg/L	<5	<5	0.00	No Limit	
EP074E: Halogenate	ed Aliphatic Compound	ds (QC Lot: 2103881)								
ES1837858-001	Anonymous	EP074: 1.1-Dichloroethene	75-35-4	5	µg/L	<5	<5	0.00	No Limit	
		EP074: lodomethane	74-88-4	5	µg/L	<5	<5	0.00	No Limit	
		EP074: trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	<5	0.00	No Limit	
		EP074: 1.1-Dichloroethane	75-34-3	5	µg/L	<5	<5	0.00	No Limit	
		EP074: cis-1.2-Dichloroethene	156-59-2	5	µg/L	<5	<5	0.00	No Limit	
		EP074: 1.1.1-Trichloroethane	71-55-6	5	µg/L	<5	<5	0.00	No Limit	
		EP074: 1.1-Dichloropropylene	563-58-6	5	µg/L	<5	<5	0.00	No Limit	
		EP074: Carbon Tetrachloride	56-23-5	5	µg/L	<5	<5	0.00	No Limit	
		EP074: 1.2-Dichloroethane	107-06-2	5	µg/L	<5	<5	0.00	No Limit	
		EP074: Trichloroethene	79-01-6	5	µg/L	<5	<5	0.00	No Limit	
		EP074: Dibromomethane	74-95-3	5	µg/L	<5	<5	0.00	No Limit	
		EP074: 1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	<5	0.00	No Limit	
		EP074: 1.3-Dichloropropane	142-28-9	5	µg/L	<5	<5	0.00	No Limit	
		EP074: Tetrachloroethene	127-18-4	5	µg/L	<5	<5	0.00	No Limit	
		EP074: 1.1.1.2-Tetrachloroethane	630-20-6	5	µg/L	<5	<5	0.00	No Limit	
		EP074: trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	<5	0.00	No Limit	
		EP074: cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	<5	0.00	No Limit	
		EP074: 1.1.2.2-Tetrachloroethane	79-34-5	5	µg/L	<5	<5	0.00	No Limit	
		EP074: 1.2.3-Trichloropropane	96-18-4	5	µg/L	<5	<5	0.00	No Limit	
		EP074: Pentachloroethane	76-01-7	5	µg/L	<5	<5	0.00	No Limit	
		EP074: 1.2-Dibromo-3-chloropropane	96-12-8	5	µg/L	<5	<5	0.00	No Limit	
		EP074: Hexachlorobutadiene	87-68-3	5	µg/L	<5	<5	0.00	No Limit	
		EP074: Dichlorodifluoromethane	75-71-8	50	µg/L	<50	<50	0.00	No Limit	
		EP074: Chloromethane	74-87-3	50	µg/L	<50	<50	0.00	No Limit	
		EP074: Vinyl chloride	75-01-4	50	μg/L	<50	<50	0.00	No Limit	
		EP074: Bromomethane	74-83-9	50	μg/L	<50	<50	0.00	No Limit	
		EP074: Chloroethane	75-00-3	50	μg/L	<50	<50	0.00	No Limit	
		EP074: Trichlorofluoromethane	75-69-4	50	μg/L	<50	<50	0.00	No Limit	
ES1837858-011	Anonymous	EP074: 1.1-Dichloroethene	75-35-4	5	μg/L	<5	<5	0.00	No Limit	
		EP074: Iodomethane	74-88-4	5	μg/L	<5	<5	0.00	No Limit	
		EP074: trans-1.2-Dichloroethene	156-60-5	5	μg/L	<5	<5	0.00	No Limit	
		EP074: 1.1-Dichloroethane	75-34-3	5	µg/L	<5	<5	0.00	No Limit	

Page	: 4 of 9
Work Order	: ES1837981
Client	: GHD PTY LTD
Project	: 2127850

ub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
P074E: Halogenate	ed Aliphatic Compound	s (QC Lot: 2103881) - continued							
S1837858-011	Anonymous	EP074: cis-1.2-Dichloroethene	156-59-2	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.1.1-Trichloroethane	71-55-6	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.1-Dichloropropylene	563-58-6	5	μg/L	<5	<5	0.00	No Limit
		EP074: Carbon Tetrachloride	56-23-5	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.2-Dichloroethane	107-06-2	5	µg/L	<5	<5	0.00	No Limit
	EP	EP074: Trichloroethene	79-01-6	5	µg/L	<5	<5	0.00	No Limit
		EP074: Dibromomethane	74-95-3	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.1.2-Trichloroethane	79-00-5	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.3-Dichloropropane	142-28-9	5	μg/L	<5	<5	0.00	No Limit
		EP074: Tetrachloroethene	127-18-4	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.1.1.2-Tetrachloroethane	630-20-6	5	μg/L	<5	<5	0.00	No Limit
		EP074: trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	<5	0.00	No Limit
		EP074: cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.1.2.2-Tetrachloroethane	79-34-5	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.2.3-Trichloropropane	96-18-4	5	μg/L	<5	<5	0.00	No Limit
		EP074: Pentachloroethane	76-01-7	5	μg/L	<5	<5	0.00	No Limit
	EP074: 1.2-D	EP074: 1.2-Dibromo-3-chloropropane	96-12-8	5	μg/L	<5	<5	0.00	No Limit
		EP074: Hexachlorobutadiene	87-68-3	5	μg/L	<5	<5	0.00	No Limit
		EP074: Dichlorodifluoromethane	75-71-8	50	μg/L	<50	<50	0.00	No Limit
		EP074: Chloromethane	74-87-3	50	μg/L	<50	<50	0.00	No Limit
		EP074: Vinyl chloride	75-01-4	50	μg/L	<50	<50	0.00	No Limit
		EP074: Bromomethane	74-83-9	50	μg/L	<50	<50	0.00	No Limit
		EP074: Chloroethane	75-00-3	50	µg/L	<50	<50	0.00	No Limit
		EP074: Trichlorofluoromethane	75-69-4	50	μg/L	<50	<50	0.00	No Limit
P074F: Halogenate	ed Aromatic Compound	ls (QC Lot: 2103881)							
S1837858-001	Anonymous	EP074: Chlorobenzene	108-90-7	5	µg/L	<5	<5	0.00	No Limit
		EP074: Bromobenzene	108-86-1	5	μg/L	<5	<5	0.00	No Limit
		EP074: 2-Chlorotoluene	95-49-8	5	μg/L	<5	<5	0.00	No Limit
		EP074: 4-Chlorotoluene	106-43-4	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.3-Dichlorobenzene	541-73-1	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.4-Dichlorobenzene	106-46-7	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.2.4-Trichlorobenzene	120-82-1	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.2.3-Trichlorobenzene	87-61-6	5	μg/L	<5	<5	0.00	No Limit
S1837858-011	Anonymous	EP074: Chlorobenzene	108-90-7	5	μg/L	<5	<5	0.00	No Limit
		EP074: Bromobenzene	108-86-1	5	μg/L	<5	<5	0.00	No Limit
		EP074: 2-Chlorotoluene	95-49-8	5	μg/L	<5	<5	0.00	No Limit
		EP074: 4-Chlorotoluene	106-43-4	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.3-Dichlorobenzene	541-73-1	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.4-Dichlorobenzene	106-46-7	5	μg/L	<5	<5	0.00	No Limit

Page	: 5 of 9
Work Order	ES1837981
Client	: GHD PTY LTD
Project	: 2127850

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EP074F: Halogenate	ed Aromatic Compound	ls (QC Lot: 2103881) - continued							
ES1837858-011	Anonymous	EP074: 1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.2.4-Trichlorobenzene	120-82-1	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.2.3-Trichlorobenzene	87-61-6	5	µg/L	<5	<5	0.00	No Limit
EP074G: Trihalomet	thanes (QC Lot: 21038	31)							
ES1837858-001	Anonymous	EP074: Chloroform	67-66-3	5	µg/L	<5	<5	0.00	No Limit
		EP074: Bromodichloromethane	75-27-4	5	µg/L	<5	<5	0.00	No Limit
		EP074: Dibromochloromethane	124-48-1	5	µg/L	<5	<5	0.00	No Limit
		EP074: Bromoform	75-25-2	5	µg/L	<5	<5	0.00	No Limit
ES1837858-011	Anonymous	EP074: Chloroform	67-66-3	5	µg/L	<5	<5	0.00	No Limit
		EP074: Bromodichloromethane	75-27-4	5	µg/L	<5	<5	0.00	No Limit
		EP074: Dibromochloromethane	124-48-1	5	µg/L	<5	<5	0.00	No Limit
		EP074: Bromoform	75-25-2	5	µg/L	<5	<5	0.00	No Limit
EP080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 2103882)							
ES1837858-001	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.00	No Limit
ES1837858-011	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.00	No Limit
EP080/071: Total Re	coverable Hvdrocarbo	ns - NEPM 2013 Fractions (QC Lot: 2103882)							
ES1837858-001	Anonymous	EP080: C6 - C10 Fraction	C6 C10	20	µg/L	<20	<20	0.00	No Limit
ES1837858-011	Anonymous	EP080: C6 - C10 Fraction	C6 C10	20	µg/L	<20	<20	0.00	No Limit
EP080: BTEXN (QC	-				10				
ES1837858-001	Anonymous		71-43-2	1	ug/l	<1	<1	0.00	No Limit
L31037030-001	Anonymous	EP080: Benzene EP080: Toluene	108-88-3	2	μg/L μg/L	<2	<2	0.00	No Limit
			100-41-4	2	μg/L	<2	<2	0.00	No Limit
		EP080: Ethylbenzene	108-38-3	2	μg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	pg/L	~2	~2	0.00	NO LITIIL
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.00	No Limit
ES1837858-011	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.00	No Limit
	, anonymous	EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.00	No Limit
			106-42-3	-	~~~		· -	0.00	
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
G020F: Dissolved Metals by ICP-MS (QCLot: 2	103995)							
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	96.8	85	114
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	95.0	84	110
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	94.0	85	111
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	93.9	81	111
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	93.6	83	111
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	95.7	82	110
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	95.3	82	112
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	96.4	81	117
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	94.2	82	112
EG035F: Dissolved Mercury by FIMS (QCLot: 21	03996)							
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	89.6	83	105
			5					
EP066: Polychlorinated Biphenyls (PCB) (QCLo EP066: Total Polychlorinated biphenyls		1	μg/L	<1	10 µg/L	89.0	62	107
		•	pg/c	-1	10 µg/L	00.0	02	107
EP074D: Fumigants (QCLot: 2103881)	504.00.7			-5	10	01.1		400
EP074: 2.2-Dichloropropane	594-20-7	5	µg/L	<5	10 µg/L	94.1	68	122
EP074: 1.2-Dichloropropane	78-87-5	5	µg/L	<5	10 µg/L	95.7	76	118
EP074: cis-1.3-Dichloropropylene	10061-01-5	5	µg/L	<5	10 µg/L	94.3	62	120
EP074: trans-1.3-Dichloropropylene	10061-02-6	5	µg/L	<5	10 µg/L	94.1	60	114
EP074: 1.2-Dibromoethane (EDB)	106-93-4	5	µg/L	<5	10 µg/L	95.0	69	117
EP074E: Halogenated Aliphatic Compounds (Q0	CLot: 2103881)							
EP074: Dichlorodifluoromethane	75-71-8	50	µg/L	<50	100 µg/L	99.0	61	138
EP074: Chloromethane	74-87-3	50	µg/L	<50	100 µg/L	94.0	67	130
EP074: Vinyl chloride	75-01-4	50	µg/L	<50	100 µg/L	105	69	129
EP074: Bromomethane	74-83-9	50	µg/L	<50	100 µg/L	109	56	140
EP074: Chloroethane	75-00-3	50	µg/L	<50	100 µg/L	99.6	61	139
EP074: Trichlorofluoromethane	75-69-4	50	µg/L	<50	100 µg/L	101	69	131
EP074: 1.1-Dichloroethene	75-35-4	5	µg/L	<5	10 µg/L	98.1	70	124
EP074: lodomethane	74-88-4	5	µg/L	<5	10 µg/L	109	70	128
EP074: trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	10 µg/L	96.3	74	118
P074: 1.1-Dichloroethane	75-34-3	5	µg/L	<5	10 µg/L	93.9	74	120
EP074: cis-1.2-Dichloroethene	156-59-2	5	µg/L	<5	10 µg/L	95.5	77	119
EP074: 1.1.1-Trichloroethane	71-55-6	5	µg/L	<5	10 µg/L	95.8	67	119
EP074: 1.1-Dichloropropylene	563-58-6	5	µg/L	<5	10 µg/L	94.0	73	119
EP074: Carbon Tetrachloride	56-23-5	5	µg/L	<5	10 µg/L	96.2	62	120

Page	: 7 of 9
Work Order	: ES1837981
Client	: GHD PTY LTD
Project	: 2127850

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP074E: Halogenated Aliphatic Compounds (QCLot: 2 ⁻	03881) - continued							
EP074: 1.2-Dichloroethane	107-06-2	5	μg/L	<5	10 µg/L	91.9	73	123
EP074: Trichloroethene	79-01-6	5	μg/L	<5	10 µg/L	97.0	76	118
EP074: Dibromomethane	74-95-3	5	μg/L	<5	10 µg/L	93.9	73	119
P074: 1.1.2-Trichloroethane	79-00-5	5	μg/L	<5	10 µg/L	96.2	72	126
EP074: 1.3-Dichloropropane	142-28-9	5	μg/L	<5	10 µg/L	98.9	71	129
P074: Tetrachloroethene	127-18-4	5	μg/L	<5	10 µg/L	97.4	72	124
P074: 1.1.1.2-Tetrachloroethane	630-20-6	5	μg/L	<5	10 µg/L	99.5	66	114
P074: trans-1.4-Dichloro-2-butene	110-57-6	5	μg/L	<5	10 µg/L	82.6	60	120
P074: cis-1.4-Dichloro-2-butene	1476-11-5	5	μg/L	<5	10 µg/L	87.1	71	128
P074: 1.1.2.2-Tetrachloroethane	79-34-5	5	μg/L	<5	10 µg/L	88.4	70	124
P074: 1.2.3-Trichloropropane	96-18-4	5	μg/L	<5	10 µg/L	94.2	74	126
P074: Pentachloroethane	76-01-7	5	μg/L	<5	10 µg/L	96.0	72	126
P074: 1.2-Dibromo-3-chloropropane	96-12-8	5	μg/L	<5	10 µg/L	78.6	66	136
P074: Hexachlorobutadiene	87-68-3	5	μg/L	<5	10 µg/L	104	58	130
P074F: Halogenated Aromatic Compounds (QCLot: 2	103881)							
P074: Chlorobenzene	108-90-7	5	μg/L	<5	10 µg/L	97.6	79	117
P074: Bromobenzene	108-86-1	5	μg/L	<5	10 µg/L	99.0	76	116
P074: 2-Chlorotoluene	95-49-8	5	μg/L	<5	10 µg/L	94.7	73	119
P074: 4-Chlorotoluene	106-43-4	5	μg/L	<5	10 µg/L	97.6	73	119
P074: 1.3-Dichlorobenzene	541-73-1	5	μg/L	<5	10 µg/L	98.7	75	117
P074: 1.4-Dichlorobenzene	106-46-7	5	μg/L	<5	10 µg/L	97.4	74	118
P074: 1.2-Dichlorobenzene	95-50-1	5	μg/L	<5	10 µg/L	96.4	75	117
P074: 1.2.4-Trichlorobenzene	120-82-1	5	μg/L	<5	10 µg/L	105	61	125
P074: 1.2.3-Trichlorobenzene	87-61-6	5	μg/L	<5	10 µg/L	101	67	123
P074G: Trihalomethanes (QCLot: 2103881)								
P074: Chloroform	67-66-3	5	μg/L	<5	10 µg/L	99.7	72	120
P074: Bromodichloromethane	75-27-4	5	μg/L	<5	10 µg/L	95.7	64	118
P074: Dibromochloromethane	124-48-1	5	μg/L	<5	10 µg/L	97.1	65	115
P074: Bromoform	75-25-2	5	μg/L	<5	10 µg/L	89.6	74	126
P075(SIM)B: Polynuclear Aromatic Hydrocarbons (QC	(Lot: 2103975)							
P075(SIM): Naphthalene	91-20-3	1	µg/L	<1.0	5 µg/L	68.5	50	94
P075(SIM): Acenaphthylene	208-96-8	1	μg/L	<1.0	5 µg/L	91.8	64	114
P075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	5 µg/L	98.1	62	113
P075(SIM): Fluorene	86-73-7	1	µg/L	<1.0	5 µg/L	82.2	64	115
P075(SIM): Phenanthrene	85-01-8	1	μg/L	<1.0	5 µg/L	86.9	63	116
P075(SIM): Anthracene	120-12-7	1	μg/L	<1.0	5 μg/L	87.0	64	116
P075(SIM): Fluoranthene	206-44-0	1	μg/L	<1.0	5 μg/L	101	64	118
P075(SIM): Pyrene	129-00-0	1	μg/L	<1.0	5 µg/L	101	63	118

Page	: 8 of 9
Work Order	ES1837981
Client	: GHD PTY LTD
Project	: 2127850

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 2103975) - con	ntinued						
EP075(SIM): Benz(a)anthracene	56-55-3	1	μg/L	<1.0	5 µg/L	90.7	64	117
EP075(SIM): Chrysene	218-01-9	1	μg/L	<1.0	5 µg/L	90.9	63	116
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	1	μg/L	<1.0	5 µg/L	87.3	62	119
	205-82-3							
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	μg/L	<1.0	5 µg/L	74.0	63	115
P075(SIM): Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	5 µg/L	92.4	63	117
P075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	μg/L	<1.0	5 µg/L	96.0	60	118
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	μg/L	<1.0	5 µg/L	92.1	61	117
P075(SIM): Benzo(g.h.i)perylene	191-24-2	1	μg/L	<1.0	5 µg/L	88.0	59	118
P080/071: Total Petroleum Hydrocarbons (QCLo	t: 2103882)							
P080: C6 - C9 Fraction		20	μg/L	<20	260 µg/L	109	75	127
P080/071: Total Petroleum Hydrocarbons (QCLo	t: 2103976)							
P071: C10 - C14 Fraction		50	μg/L	<50	2000 µg/L	88.7	76	116
P071: C15 - C28 Fraction		100	μg/L	<100	3000 µg/L	97.5	83	109
P071: C29 - C36 Fraction		50	μg/L	<50	2000 µg/L	87.7	75	113
P080/071: Total Recoverable Hydrocarbons - NEF	M 2013 Fractions (QCLc	ot: 2103882)						
P080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	310 μg/L	111	75	127
P080/071: Total Recoverable Hydrocarbons - NEF	M 2013 Fractions (QCLc	ot: 2103976)						
P071: >C10 - C16 Fraction		100	μg/L	<100	2500 µg/L	92.2	76	114
P071: >C16 - C34 Fraction		100	μg/L	<100	3500 µg/L	91.9	81	111
P071: >C34 - C40 Fraction		100	μg/L	<100	1500 µg/L	95.4	77	119
P080: BTEXN (QCLot: 2103882)								
P080: Benzene	71-43-2	1	μg/L	<1	10 µg/L	107	70	122
P080: Toluene	108-88-3	2	μg/L	<2	10 µg/L	105	69	123
P080: Ethylbenzene	100-41-4	2	μg/L	<2	10 µg/L	99.7	70	120
P080: meta- & para-Xylene	108-38-3	2	μg/L	<2	10 µg/L	99.6	69	121
	106-42-3							
P080: ortho-Xylene	95-47-6	2	μg/L	<2	10 µg/L	100	72	122
P080: Naphthalene	91-20-3	5	μg/L	<5	10 µg/L	94.3	70	120

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020F: Dissolved Metals by ICP-MS (QCLot: 2103995)							

Page	: 9 of 9
Work Order	: ES1837981
Client	: GHD PTY LTD
Project	: 2127850

Sub-Matrix: WATER					Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery L	imits (%)	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EG020F: Dissolve	d Metals by ICP-MS(QCLot: 2103995)- c	ontinued						
ES1837973-001	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	119	70	130	
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	104	70	130	
		EG020A-F: Chromium	7440-47-3	1 mg/L	101	70	130	
		EG020A-F: Copper	7440-50-8	1 mg/L	108	70	130	
		EG020A-F: Lead	7439-92-1	1 mg/L	106	70	130	
		EG020A-F: Manganese	7439-96-5	1 mg/L	99.5	70	130	
		EG020A-F: Nickel	7440-02-0	1 mg/L	109	70	130	
		EG020A-F: Zinc	7440-66-6	1 mg/L	107	70	130	
G035F: Dissolve	d Mercury by FIMS (QCLot: 2103996)							
ES1837970-001	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	108	70	130	
EP074E: Halogena	ated Aliphatic Compounds (QCLot: 21038	81)						
ES1837858-001	S1837858-001 Anonymous	EP074: 1.1-Dichloroethene	75-35-4	25 µg/L	106	70	130	
		EP074: Trichloroethene	79-01-6	25 µg/L	90.5	70	130	
EP074F: Halogena	ated Aromatic Compounds (QCLot: 21038	81)						
ES1837858-001	Anonymous	EP074: Chlorobenzene	108-90-7	25 µg/L	97.7	70	130	
EP080/071: Total I	Petroleum Hydrocarbons (QCLot: 210388	2)						
ES1837858-001	Anonymous	EP080: C6 - C9 Fraction		325 µg/L	120	70	130	
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2013 F	ractions (QCLot: 2103882)						
ES1837858-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 μg/L	118	70	130	
EP080: BTEXN (C	QCLot: 2103882)							
ES1837858-001	Anonymous	EP080: Benzene	71-43-2	25 µg/L	102	70	130	
		EP080: Toluene	108-88-3	25 µg/L	96.1	70	130	
		EP080: Ethylbenzene	100-41-4	25 µg/L	96.0	70	130	
		EP080: meta- & para-Xylene	108-38-3	25 µg/L	96.0	70	130	
			106-42-3					
		EP080: ortho-Xylene	95-47-6	25 µg/L	97.0	70	130	
		EP080: Naphthalene	91-20-3	25 µg/L	94.4	70	130	

QA/QC Compliance Assessment to assist with Quality Review					
Work Order	: ES1837981	Page	: 1 of 5		
Client	: GHD PTY LTD	Laboratory	: Environmental Division Sydney		
Contact	: EMMA HARRISON	Telephone	: +61-2-8784 8555		
Project	: 2127850	Date Samples Received	: 17-Dec-2018		
Site	:	Issue Date	: 24-Dec-2018		
Sampler	: TERRY NHAM	No. of samples received	: 1		
Order number	:	No. of samples analysed	: 1		

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page	: 2 of 5
Work Order	ES1837981
Client	: GHD PTY LTD
Project	2127850

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Count		Rate (%)		Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	0	6	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	0	6	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	7	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
PAH/Phenols (GC/MS - SIM)	0	6	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	0	6	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	7	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER				Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time
Method	Sample Date	Ex	traction / Preparation				
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) QC02	14-Dec-2018				19-Dec-2018	12-Jun-2019	~
EG035F: Dissolved Mercury by FIMS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) QC02	14-Dec-2018				20-Dec-2018	11-Jan-2019	✓
EP066: Polychlorinated Biphenyls (PCB)							
Amber Glass Bottle - Unpreserved (EP066) QC02	14-Dec-2018	20-Dec-2018	21-Dec-2018	1	21-Dec-2018	29-Jan-2019	✓
EP074D: Fumigants							
Amber VOC Vial - Sulfuric Acid (EP074) QC02	14-Dec-2018	21-Dec-2018	28-Dec-2018	~	21-Dec-2018	28-Dec-2018	~
EP074E: Halogenated Aliphatic Compounds							
Amber VOC Vial - Sulfuric Acid (EP074) QC02	14-Dec-2018	21-Dec-2018	28-Dec-2018	1	21-Dec-2018	28-Dec-2018	~
EP074F: Halogenated Aromatic Compounds					~		
Amber VOC Vial - Sulfuric Acid (EP074) QC02	14-Dec-2018	21-Dec-2018	28-Dec-2018	~	21-Dec-2018	28-Dec-2018	1

Page	: 3 of 5
Work Order	: ES1837981
Client	: GHD PTY LTD
Project	2127850

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	Ex	traction / Preparation				
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP074G: Trihalomethanes							
Amber VOC Vial - Sulfuric Acid (EP074) QC02	14-Dec-2018	21-Dec-2018	28-Dec-2018	1	21-Dec-2018	28-Dec-2018	~
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP075(SIM)) QC02	14-Dec-2018	20-Dec-2018	21-Dec-2018	1	21-Dec-2018	29-Jan-2019	✓
EP080/071: Total Petroleum Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP071) QC02	14-Dec-2018	20-Dec-2018	21-Dec-2018	1	21-Dec-2018	29-Jan-2019	1
Amber VOC Vial - Sulfuric Acid (EP080) QC02	14-Dec-2018	21-Dec-2018	28-Dec-2018	1	21-Dec-2018	28-Dec-2018	1
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071) QC02	14-Dec-2018	20-Dec-2018	21-Dec-2018	1	21-Dec-2018	29-Jan-2019	~
Amber VOC Vial - Sulfuric Acid (EP080) QC02	14-Dec-2018	21-Dec-2018	28-Dec-2018	~	21-Dec-2018	28-Dec-2018	1
EP080: BTEXN							
Amber VOC Vial - Sulfuric Acid (EP080) QC02	14-Dec-2018	21-Dec-2018	28-Dec-2018	1	21-Dec-2018	28-Dec-2018	✓

Page	: 4 of 5
Work Order	ES1837981
Client	: GHD PTY LTD
Project	2127850

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluation	n: 🗴 = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Dissolved Mercury by FIMS	EG035F	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	6	0.00	10.00	x	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	0	6	0.00	10.00	3£	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	7	0.00	10.00	x	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Dissolved Mercury by FIMS	EG035F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Dissolved Mercury by FIMS	EG035F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	7	14.29	5.00	√	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Dissolved Mercury by FIMS	EG035F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	19	5.26	5.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	6	0.00	5.00	*	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	0	6	0.00	5.00	*	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	7	0.00	5.00	*	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page	: 5 of 5
Work Order	ES1837981
Client	: GHD PTY LTD
Project	2127850

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Polychlorinated Biphenyls (PCB)	EP066	WATER	In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
Volatile Organic Compounds	EP074	WATER	In house: Referenced to USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for sparging.

Appendix G – Waste tracking documents

				ction Authority - Onl RT CERTIFICATE - N			ng Syster	m	
Created by :	TOM CUB	IS 09-Jan-2019		T CENTIFICATE - N	0.21009		atus:	Process	sed
CA no:	2C001499		CA start date:01-Jan-2019					te: 31-Dec-201	9
PART 1 (this part t	o be compl	eted by consigno	r at pickup)						
CONSIGNOR									
GHD Pty Ltd - Sy	-				Rol	-	ducer		
Level 15 / 133 Ca	•	ST		Sophie Thrower	Ema			_	
Sydney, NSW 20	00		Phone:	(04) 2100 1801	Fax:	N/A	0		: (04) 2100 1801
Pickup 2 Bent S	St .		ABN:	39 008 488 373	ANZ5I	C code:	0	Licence no.	: n/a
details: Lindfield									
WASTE									
WASTE Waste code:	N	220 - Asbestos							
Description:		sbestos							
Form:		olid		Liquid waste levy a	pplies:	No			
Proposed treatm	ent: S	torage		Classification: Sp	pecial				
Contaminants:		/A							
Dangerous good				Subsidiary risk clas					N/A
Packaging type:	. N	/A		Packing group no:	N/	A	NO.	package:	N/A
PICKUP									
Pick-up date: 11-	Jan-2019	Intended delive	ery date: 16	S-Jan-2019 Wast	te amoun	t at pick	up: 914.0	00 kg (required	- Yes)
PART 2 - TRANSF	PORTER (th	is part to be com	pleted by th	ie transporter at picku	up)				
ENVIRONMENT		IENT SOLUTION	S (TRANS	PORTER)					
7 PEMBURY RO	AD		Contact:	JOCK GERMANY	Em	ail: jock	@envirot	treat.com.au	
MINTO, NSW 256	66		Phone:	()	ax :	()	078 0197	Transit state:	
			Licence n	io.: 13157 Ve	ehicle reg	J: TBA		Transport typ	e: Road
PART 3 - RECEIV	ING FACILI	TY (this part to be	e complete	d by the receiving fac	ility)				
ENVIRONMENT		IENT SOLUTION	S PTY LTE) - MINTO					
WAREHOUSE B,	7 PEMBUR	RY ROAD	Contact:	JOCK GERMANY	Em	ail: jock	@envirot	treat.com.au	
MINTO, NSW 256	66		Phone:	(02) 9605 8543	Fax				
			Licence n	o.: 20696					
Receiving facility Arrival date:			not of owning	al. 014.00 kg	Did				•
Acceptance date	11-Jan- : 11-Jan-		init at arriv	al: 914.00 kg	Dia	paper i		oany load? Ye	5
Processing date:			sing treatm	ent: Storage					
NOTE									
				on 2014 ("the Regulation") s in the approved form and					

(a) the consignor certifies, by signing this certificate, that the information in Part 1 of the certificate is correct;
(b) the transporter certifies, by signing the certificate, that the information in Part 2 of the certificate is correct; and
(c) the receiving facility (receiver) certifies, by signing this certificate, that the information in Part 3 of the certificate is correct; and
(d) the receiving facility records any discrepancies between the waste received and the information recorded on this certificate in the EPA online waste tracking system. If any of the information in Parts 1 and 2 of the certificate is not correct and it is not practical at the time to change the information in the EPA online tracking system and print a new version of the certificate, the consignor or transporter must write and initial any corrections on the certificate. The receiving facility must ensure these corrections are entered into the EPA online system as soon as is practicable afterwards. The receiving facility must retain this certificate for four years.

GHD

Level 15 133 Castlereagh Street, Sydney 2000 T: 61 2 9239 7100 F: OfficeFax E: sydmail@ghd.com

© GHD 2019

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

21-SO1-1359719083-

42/https://projects.ghd.com/oc/sydney2/kuringgaicouncillind/Delivery/Documents/2127850_Lindfield _Groundwater_Investigation_Report_31Jan2019.docx

Document Status

Revision	Author	Reviewer		Approved for Issue				
		Name	Signature	Name	Signature	Date		
0	Emma Harrison	Andre Smit	<u>I</u>	Joanna Curry	Æ	7 March 2019		
1	Emma Harrison	Andre Smit		Joanna Curry	B	14 March 2019		

www.ghd.com

